Computer Science 301

C Programming in Unix
SIENAcollege Siena College

Computer Science Fa” A 2024

Assessment 2: METAL Vertex Search
Due: 9:00 AM, Wednesday, September 25, 2024

We’re finally ready for your first programming assignment. Please review the syllabus description
of the expectations for a programming assignment as opposed to a practice program.

You may work alone or in groups of size 2 or 3 on this assessment. However, in order to make
sure you learn the material and are well-prepared for the exams, those who work in a group should
either collaborate closely while completing the program or work through the program individually
then it them within your group to agree on a solution. In particular, the “you do this and I’'ll do that”
approach is sure to leave you unprepared for upcoming tasks and the exams, and is prohibited.

Learning goals:

1. To gain experience working with a larger C program.

2. To practice with file I/O, pointers, and st ructs in C.

Getting Set Up

In Canvas, you will find a link to follow to set up your GitHub repository, which will be named
vsearch—-assessmentt-yourgitname, for this assessment. Only one member of the group
should follow the link to set up the repository on GitHub, then others should request a link to be
granted write access.

All GitHub repositories must be created with all group members having write access and all group
member names specified in the README . md file by 11:59 PM, Friday, September 20, 2024. This
applies to those who choose to work alone as well!

Development Process Expectations and Reporting

Important: in order to encourage a step-by-step problem-solving approach and good software de-
velopment practices, you must have no fewer than 5 commits of partially-working versions of this
program, with good commit messages (e.g., “reading input file correctly”, “first working version of
the waypoint structure”, etc.). A penalty up to 50% for this part of the assignment will be applied
if these commits are not indicated below and/or do not demonstrate an appropriate development

process.

Please add the 5 commits you wish to have considered for this requirement to the table that you
will find in your repository’s README . md file. To find the information to include in this table,
go to you repository on GitHub. Then go to its commits page. At the end of each commit listed
there, you will see an icon that looks like this: <>. This is a link to the GitHub repository as it

CSC 301 C Programming in Unix Fall A 2024

existed after that commit. Copy that link and the corresponding commit message into the table in
the README . md file.

Implementing a Vertex Extremes Search

As many of you have done in the past, we’ll be working with some data from the METAL project.
In fact, you might have already written code to solve the “problem” we’re looking at in Java for an
earlier class.

METAL provides a collection of graph data files that represent various highway systems. Each of
the “. tmg” files is in the format described on METAL’s “Graph File Formats” page. You’ll want
to download a few smaller and a few larger data files, and should choose “collapsed” or “simple”
format graphs. The “traveled” format graphs have additional information not needed for this task.
You can use METAL’s Highway Data Examiner to run the Vertex Extremes algorithm visualization
to see how the algorithm works, and to check your answers, if you’d like.

Write a program with its main function in ext remes . c that reads the “waypoints” portion of
a graph file whose file name is specified as a command-line parameter, and then finds the east-
ernmost, westernmost, northernmost, and southernmost waypoints in the file. For each “winner”,
print out all of that waypoint’s information: its label, its latitude and its longitude. Handle ties by
keeping only the first waypoint at a given extreme latitude or longitude that you encounter. Include
aMakefile that builds your program.

Notes:

* You can safely ignore the “road segments” portion of the input file for this assignment.
* You can safely assume that no waypoint label is longer than 256 characters.

* By including the \n in your fscanf format string, you can automatically move the input
to the next line. You might alternately use a function that reads characters from the input
until a new line is encountered to skip over things you don’t need to read. The latter has the
advantage that you would not need a place to store things you don’t care about.

* If reading into a double variable with scanf or fscanf, you will need the %1 f format
specifier (a “long float”) so it knows you have the larger memory chunk available to write as
a double rather than a £1oat. The compiler should warn you of this if using ~-Wall.

* You can copy one C string to another using the st rcpy function, defined in st ring.h. If
you have strings declared as

char strl[256];
char str2[256];

the following would copy the contents of strl to str2:

strcpy (str2, strl);

CSC 301 C Programming in Unix Fall A 2024

* Valid values for latitudes range from -90 (southernmost) to 90 (northernmost) and for longi-
tudes range from -180 (westernmost) to 180 (easternmost).

* If you were doing this in an object-oriented language like Java or C++, you might create
an object to represent each waypoint and provide methods to compare them, print them,
etc.. But here, you should use a struct that has fields for a string (array of char) and
two doubles to represent the current waypoint you are considering. Follow the model of
the struct ratio from earlier, and have functions to operate on your waypoints, place
them in their own C source file waypoint . c, and have a header file waypoint .h with
appropriate information (st ruct definitions and function prototypes) that you can include
in extremes.c.

* This will allow you to store a pointer to a waypoint structure to keep track of the “most
extreme” leader in each direction you’ve encountered so far. Do this rather than keeping
track of leaders by remembering indices into an array, so you will gain some extra experience
with pointers in C.

* You don’t actually need to store all of the waypoints. But, for a little extra practice with
arrays and pointers, and in recognition that they might be useful if we were to expand this
program to have some additional functionality, let’s do this extra step. Store pointers to
all of the waypoints in an array as they’re being read in, then traverse that array to find the
answers. You are given the number of waypoints at the top of the file, so you can dynamically
allocate enough space for it before you start reading and creating waypoints. At the end, also
perform a search for each “winner” waypoint in the array to print out its index along with
the other information about the waypoint. This could alternately be accomplished by storing
the waypoint number in the structure, but you should not do that.

Submission

Commit and push! And list your commits to be considered for the development process evaluation
in the table in your repository’s README . md.

Grading

This assignment will be graded out of 60 points.

CSC 301

C Programming in Unix Fall A 2024
| Feature | Value | Score |
Command-line parameter 2
Read input file 2
waypoint structure and functionality 15
Array of waypoint pointers created and filled 5
Correctly find extreme waypoints 10
Print all waypoint information for extreme winners 4
Search for and print indices of winners 4
All cleanup done properly (closing files, freeing memory) 4
Documentation 10
Design/style/efficiency 3
Makefile 1
| Total | 60 | |

