
Computer Science 301
C Programming in Unix
Siena College
Fall A 2024

Assessment 3: A Ratio Summer
Due: 9:00 AM, Wednesday, October 2, 2024

In this assessment, you will work with structures and arrays and pointers.

You may work alone or in groups of size 2 or 3 on this assessment. However, in order to make sure
you learn the material and are well-prepared for the exams, those who work in a group should either
collaborate closely while completing the problems or work through the problems individually then
discuss them within your group to agree on a solution. In particular, the “you do these and I’ll
do these” approach is sure to leave you unprepared for upcoming tasks and the exams and is
prohibited.

This assessment will be graded as a programming assignment. Please review the syllabus descrip-
tion of the expectations for a programming assignment as opposed to a practice program.

Learning goals:

1. To work with structures reqiuring explicit and careful memory management

Getting Set Up
In Canvas, you will find a link to follow to set up your GitHub repository, which will be named
ratiosum-assessmentt-yourgitname, for this assessment. Only one member of the
group should follow the link to set up the repository on GitHub, then others should request a
link to be granted write access.

All GitHub repositories must be created with all group members having write access and all group
member names specified in the README.md file by 11:59 PM, Friday, September 27, 2024. This
applies to those who choose to work alone as well!

Development Process Expectations and Reporting
Important: in order to encourage a step-by-step problem-solving approach and good software de-
velopment practices, you must have no fewer than 5 commits of partially-working versions of this
program, with good commit messages (e.g., “reading input file correctly”, “first working version of
the waypoint structure”, etc.). A penalty up to 50% for this part of the assignment will be applied
if these commits are not indicated below and/or do not demonstrate an appropriate development
process.

Please add the 5 commits you wish to have considered for this requirement to the table that you
will find in your repository’s README.md file. To find the information to include in this table,
go to you repository on GitHub. Then go to its commits page. At the end of each commit listed



CSC 301 C Programming in Unix Fall A 2024

there, you will see an icon that looks like this: <>. This is a link to the GitHub repository as it
existed after that commit. Copy that link and the corresponding commit message into the table in
the README.md file.

The Ratio Summer
Write a program with a main function in sum_ratios.c that reads in a series of lines repre-
senting ratios from an input file and prints the sum of those ratios in lowest terms at the end.

The program should take a single command-line parameter which is the name of the file that
contains the list of ratios.

Properly formatted lines in the file should look like this, where n and d are int values:

n/d

Note that with scanf and fscanf, you can match characters and not use them in your results.
For example, if you know the input is going to be 3 comma-separated numbers, such as

23,7,21

You can read all three with a single scanf:

int matched, first, second, third;
matched = scanf("%d,%d,%d", &first, &second, &third);

which should place the 23 in first, 7 in second, 21 in third, and a 3 in matched. Your
input won’t have commas, but will have that slash, and this technique will simplify your input.

Your program should stop reading input and print the final result when it encounters an incorrectly
formatted line or the end of the file. (Hint: fscanf’s return value is your friend.)

You do not need to store, nor should you store, a collection of all of the ratios. The only ones you
need are the current one and the running sum.

You should use the ratio.c, ratio.h, gcd.c, and gcd.h files, unmodified, from the earlier
lab. They are provided in your repository.

Provide your own sum_ratios.c and a working Makefile that will build your program on
noreaster (and hopefully any other system on which you wish to run it).

Be sure to perform appropriate error checking including meaningful error reporting, and free all
memory your program allocates.

Your program should compile with no warnings. Even if you develop somewhere else, be sure to
try this on noreaster before you finalize your submission.

2



CSC 301 C Programming in Unix Fall A 2024

Submission
Commit and push (and document your 5 commits)!

Grading
This assignment will be graded out of 55 points.

Feature Value Score
input file processing 6
correct sum of inputs 25
memory management 12
documentation and style 10
Makefile 2
Total 55

3


