
Computer Science 252
Problem Solving with Java
The College of Saint Rose

Spring 2016

Topic Notes: Defining Classes

Defining Classes

So far, we have been operating directly on the objectdraw graphics primitives such as FramedRect

and FilledOval. Your work on the laundry lab may have started to give you an indication that

such an approach can become tedious as our programs become more complex. You have to update

both a FramedRect and a FilledRect that, together, form the swatch of laundry during the

dragging operations.

Suppose we wanted to augment our basketball game to have a more realistic-looking basketball:

See Example: NiceBasketball

This is a much nicer-looking basketball than what we had in our original game. We do have one

new objectdraw construct to help us out here: the FramedArc. This draws only a part of a

FramedOval. It determines which part with two additional parameters, a start angle and an arc

angle, both specified in degrees. The start angle refers to the angle from the right edge of the oval,

counterclockwise, where we are to start drawing. The arc angle refers to the number of degrees,

counterclockwise, to draw.

We will not focus much on that aspect of this example, but since FramedArcs are useful building

blocks (along with their cousins the FilledArcs), another example demonstrates a bit more

about how to use them:

See Example: Arcs

But back to our nice basketball. Consider how messy our code would become if we decided to add

a dragging functionality to this basketball. Not just one, not just two, but six objects would need

to be moved in the dragging code.

That certainly would become tedious. And we might also want to use this nice basketball in other

programs and in other ways.

Java provides a mechanism that will help us to define a class of objects, much like objectdraw

defined our graphics primitives, that we can use in our programs in a very convenient way.

Consider this example, which defines a class called NiceBBall in NiceBBall.java and then

makes use of it in an updated version of our basketball game in a familiar WindowController

class called FancyBasketball.

See Example: FancyBasketball

CSC 252 Problem Solving with Java Spring 2016

What is a NiceBBall? As we can see, it is a basketball. The ability to draw basketballs is not a

standard feature of Java or of the objectdraw library. This program shows how Java allows us to

define new classes of objects appropriate to the needs of the particular program we are writing.

You’ve already been defining classes – the WindowController extension that has been the

framework for each program we’ve seen is a class definition. From this you are familiar with the

basics of the structure that will be required to define a NiceBBall custom class.

public class Name

{
constant and variable declarations

methods

}

Our earlier classes always extended WindowController, which indicated that they would be

designed to respond to mouse activities in the window. This will not be the role of the NiceBBall

class, so it will not extend WindowController and it will not include methods like onMouseClick

or onMouseDrag. Instead, the body of the NiceBBall class will consist of definitions of meth-

ods corresponding to the things we want to be able to tell a NiceBBall to do, like move and

moveTo.

When we define such a class:

1. We declare instance variables describe the parts and state of an object of that class. Any

individual basketball is composed of ovals, lines and arcs so the instance variable of the

NiceBBall class refer to these objects.

2. We provide a special method called a constructor. We’ve been using constructors for our

library objects - whenever we write a construction. When we say “new FramedRect”,

Java knows what to do to make a FramedRect appear on the screen because someone

defined a constructor for FramedRect. When we write a constructor, we will write a list

of statement to construct the components of the object desired (the parts of the basketball)

and associate the with instance variables defined in the new class.

3. We define methods - i.e., lists of statement explaining how to perform the actions we want

the new objects to know how to do.

Mutator Methods

Let’s first consider one of the methods in the NiceBBall class:

public void move(double dx, double dy) {

body.move(dx, dy);

// ...

2

CSC 252 Problem Solving with Java Spring 2016

// and all of the other parts also are moved

}

The first keyword in a method declaration is either public or private. (The keyword protected

is also allowed, but we will not use it in this course.) These keywords determine the “visibility”

of a method. If a method is declared to be public then it can be called from methods in other

classes. For example, the onMouseDrag method of the FancyBasketball class calls the

move method to the NiceBBall object we create. This would not be possible if that first key-

word had been private.

All of our instance variables are private, because they should only be used inside of the class

where they are declared. Occasionally we will have constants that need to be visible outside of the

class that contains them. In that case we will declare them as public static final ...

The next keyword in the declaration of move above is void. This (not very intuitively) indicates

that it is a mutator method. That is, it simply performs an action rather than returning a value

which can be used in an expression.

Next comes the method’s name, move for example. After this we place formal parameter declara-

tions in parentheses.

Most of the methods we have define so far, have expected one piece of information when invoked

(e.g., the Location provided to mouse handing methods). Therefore, the headers of these meth-

ods have all declared a single formal parameter “Location point”.

The methods associated with an object like a NiceBBall may expect to be provided other types

of information when invoked. For example, the move method will expect a pair of numbers

specifying x and y offsets. The parameters listed in a method’s header must correspond to the

information that will be provided when the method is invoked.

The parameters of move are of type double. These give the distance that the object should move

in the x and y directions, respectively. Recall that the way we use the move method is as follows:

anObject.move(10, 20);

In method headers/signatures, parameters serve as declarations of variables. Thus the occurrence

of “double dx” between parentheses serves to declare the variable dx as a parameter of type

double. Parameters are used to pass along information to a method. Thus the body of method

move can use the variable dx to represent the number provided when the method was invoked

to specify the desired x offset. The correspondence between the formal parameter names and

the actual parameter values is determined by their order. The first actual parameter listed in a

method invocation is associated with the first formal parameter listed in the header and so on. So

in FancyBasketball’s onMouseDrag method, when the call

ball.move(point.getX() - lastMouse.getX(),

point.getY() - lastMouse.getY());

3

CSC 252 Problem Solving with Java Spring 2016

is executed, Java transfers control to the movemethod of NiceBBall and initializes dx and dy to

the results of point.getX() - lastMouse.getX() and point.getY() - lastMouse.getY(),

respectively.

The NiceBBall class has two other mutator methods: moveTo and changeToRandomColor.

The method header for moveTo is very similar to that of move. The statement list found in

moveTo’s method body is much shorter than that move’s, however. This is because the definition

of moveTo takes advantage of the definition of move: moveTo computes the offset from the

ball’s current location to the desired location and then invokes the move method to move the 6

pieces of the ball.

The changeToRandomColor mutator method is included mainly to emphasize that the meth-

ods we define in a class do not need to be only those we have seen from the graphics primitive

we’ve been using so far. Many of our methods will have familiar names like move, contains, or

removeFromCanvas, but that’s only because we are often defining graphical objects and those

are natural operations on graphical objects. In changeToRandomColor, we have provided

functionality for our NiceBBall objects that does not exist for standard graphics primitives like

FramedRect.

Constructors

Constructors are used to perform the actions which must be undertaken when the object is created.

As a result, they often perform the same kind of actions as the begin method in the classes

extending WindowController. In particular, they typically provide initial values of instance

variables and create the graphic objects needed in a class.

The form of the constructor will be very similar to that of methods:

public ClassName(params here ...)

The name of the constructor will always be the same as the name of the class being defined.

Thus if we were defining a class named NiceBBall, the constructor would have the same name.

Constructors are usually public, and may have as many parameters as are necessary to provide

them with the information necessary to initialize instance variables. However, constructors differ

from methods by omitting the void before the constructor’s name.

As an example, the constructor for class NiceBBall has parameters corresponding to the starting

location of the upper left hand corner of the ball, the size of the ball desired and information on

what canvas the ball should be drawn. Thus its declaration looks like:

public NiceBBall(double left, double top,

double size, DrawingCanvas aCanvas)

The type of the last parameter of the NiceBBall constructor is new to us. DrawingCanvas

is the type of the variable canvas that we have been using when creating graphic objects. It is

the type of a surface that can be used for drawing graphic objects. To this point, we have only

been using the standard one (called canvas) that is defined for us by the WindowController.

4

CSC 252 Problem Solving with Java Spring 2016

Since NiceBBall does not extend WindowController, it would not have any idea what

canvas is unless we tell it, and we tell it that information by passing it as a parameter to the

constructor.

Accessor Methods

The last piece of the definition of the NiceBBall class is the specification of its accessor meth-

ods: contains, getX, and getY. Accessor methods allow us to ask questions of an object and

get information back.

The contains method’s header looks like:

public boolean contains(Location point)

This differs from the mutator methods in that the magic word void has been replaced by the name

of the type boolean. This is because the method we are defining here is an accessor method that

will return a boolean value. That is, the results of sending this message to (i.e., calling this method

of) an object will be a value: either true or false. As a result, it is used in a context expecting

a boolean result, such as:

if (anObject.contains(lastPoint)) ...

In fact, the word void serves a similar function. It tells us what kind of value the method being

declared will produce – in the case of a mutator method: no value.

Variables and Scope

The previous example also brings up an important consideration once we start having multiple

classes working together, and classes with many methods. The methods move and changeToRandomColor

each have local variables.

These are variables declared right inside a method, and exist only in that method’s body. The

declarations look a lot like an instance variable declaration, except that we omit the “private”

qualifier, since local variables are already very “private” – the name is only meaningful within the

method where it is declared.

To summarize the ways we have to declare names for variables and constants:

• Instance variables are declared outside of any method and are visible inside all methods. The

value of an instance variable is retained from one method call to the next – for the entire life

of the object.

• Named constants are also declared outside of any method and are visible inside all methods.

The value never changes once set initially.

5

CSC 252 Problem Solving with Java Spring 2016

• Formal parameters are used to communicate information to a method from its caller. The

names are meaningful only within the method. New values are provided (by the caller in the

corresponding actual parameters) each time the method is called.

• Local variables are used to store temporary values needed within the execution of a method.

They exist only within the method in which they are declared and do not retain their values

from one call of the method to the next.

Less experienced Java programmers are sometimes confused about when to use an instance vari-

able and when to use a local variable. The correct choice depends on how long the information

that will be stored in the variable needs to exist. If it only needs to exist within a single method

execution, it should be a local variable. If it needs to exist across method calls, it should be an

instance variable.

Multiple Instances of a Custom Class

One of the great advantages of defining a custom class is that we can then instantiate (i.e., con-

struct) as many objects of that class as we wish.

For example, we could update our “mouse droppings” program to draw lots of nice basketballs

instead of little red circles:

See Example: DrawBBalls

For another example, let’s use a laundry theme. We’ll construct a somewhat more believeable

laundry item that looks like a T-shirt, create two instances, and then drag them around the screen.

See Example: Drag2Shirts

Additional Examples

Here are a few more examples of custom objects.

See Example: DragCars

See Example: DoNotEnter

6

