Computer Science 252

Problem Solving with Java
The College of Saint Rose
Fall 2014

Topic Notes: Active Objects

Repetition

People findepetitionboring. Fortunately, computers don'’t feel this way. Thikigunate because

repetition is the only way we can exploit the full power of arquuter. As we discussed in the first
class, part of the computer’s power comes from the fact than follow the instructions stored

within its memory rapidly without waiting for a human beirggress a button or flip a switch.

In all of the examples we have considered so far, the segeerigestructions performed when a
mouse event occurs are quite short and then the computeo hasttfor us again. The computer
works for a fraction of a second then waits. We could get tepder to do more work in response
to our mouse events by writing methods with thousands ofonalof instructions, but this would

be painful.

But we can get the computer to execute thousands or milliomstfictions without writing thou-
sands or millions of instructions ourselves: we can havedneputer execute the same instructions
over and over and over again.

At first, this may seem like a boring and inefficient use of tomputer. In fact, when in comes to
following instructions, doing the same thing over and ovgaia can be very interesting. Think of
the scribble program or the Spirograph program. Each timdnag the mouse in these programs,
the computer “does the same thing” in the sense that it ezethie same instructions — the body
of onMouseDr ag. Each time these instructions are executed, however, timpuater actually
does something different because the meaning of at leasbfotie variables referenced in the
instructionspoi nt , has changed.

Consider this example, where we get some “interesting” behdlkrough repeating the same
instructions without depending on changes in the mousdiposi

See Example: RailroadClick
Here, we draw a railroad track, one railroad tie at a time, llmking the mouse.

Each time the mouse is clicked, tbeMoused i ck method does the same things. It creates
aFi | | edRect that looks a bit like a railroad tie and it increases the valsgociated with the
variablet i ePosi ti on. Becausd i ePosi ti on is increased with each click, the next click
draws its tie a little farther over in the screen. To prevém program from wasting time by
drawing ties no one will ever see, ah statement is included that skips the creation of new ties
oncet i ePosi ti on gets large enough.

It is painful to have to click repeatedly to get the ties draimstead we would like the computer to

CSC 252 Problem Solving with Java Fall 2014

continue drawing ties while they are still on the screen. & know Java provides loop constructs:
thewhi | e, do. . whi | e andf or statements, to perform repeated actions.

Using this construct, we can draw all of our railroad tieshatiegi n method.
See Example: Railroad

As in this example, the condition controlling théni | e loop will usually involve the variable
that's changing. If nothing in the condition changes, thaa lbop will never terminate. Such

a condition is called amfinite loop We avoid this, in general, by ensuring that our loops have
a precise stopping condition. While we might be able to lookratlgorithm and say “hey, we
should stop now”, Java will not (and in fact cannot, in gehatatermine if a loop will not stop.

An example using &or loop to draw lots of ovals each time someone clicks:
See Example: RandomOvalsOnClick
We can also use loops to construct various patterns. We raititige a few of those in class.

See Example: DiagonalOvals

Memory Diagrams

Before we move on to active objects and especially on to remurg is appropriate to examine a
bit more closely how variables are allocated in our prograivis have drawn these in class several
times, and they become more essential to being able to uaddrsow our programs work as we
have more and more objects interacting with each other.

We will go over an example in detail in class, but the followis a set of guidelines that will
hopefully aid in your construction of memory diagrams, asdaaesult, a better understanding
of how and why our programs behave as they do. These ingtngcissume we are running an
Objectdraw program launched through a classéxdtends W ndowCont r ol | er.

When we start the program, here is what happens and how wesegpiiein a memory diagram.

e Java allocates a chunk of memory large enough to hold all@¥lndowCont r ol | er
class’ instance variables, and executes any initialinatiat happens on the same line as
the declarations. This includes the creation of the carmedglze instance variableanvas
that comes fromW ndowCont r ol | er. For the memory diagram, we will draw a box
labeled with the class name, which has space for each irest@ni@able, plus the canvas. Any
variables not explicitly initialized on their declaratibne are initialized tanul | for object
references for integer types0. 0 for floating point types, anflal se for bool eans.
This memory will remain allocated for as long as the programunning.

e Thebegi n method is invoked. As is the case for all nehat i ¢ method invocations, Java
will allocate a chunk of memory large enough to hold all paggers and local variables, plus
the implicit “t hi s” reference which directs the method to the object on whigh dalled,
So it can locate the correct set of instance variables. Thimaony will remain allocated only
until thebegi n method returns.

CSC 252 Problem Solving with Java Fall 2014

Java also needs to allocate memory and execute code whenabjest/is constructed.

e When an object is constructedn@w XXXXX"), a chunk of memory is allocated which is
large enough to hold all instance variables of the objeat,executes any initialization that
happens on the same line as the declarations. For the meragnach, we will draw a box
labeled with the class name, which has space for each irestam@ble. Any variables not
explicitly initialized on their declaration line are iralized tonul | for object references,
0 for integer types0. 0O for floating point types, antlal se for bool eans. This memory
will remain allocated for as long as any part of the prograsdeeference to this object.

e The object’s constructor is invoked. Java will allocate ardhof memory large enough to
hold all parameters and local variables, plus the implitii“s” reference which directs
the method to the object on which it is called, so it can lo¢h&ecorrect set of instance
variables. This memory will remain allocated only untilghinvocation of the constructor

returns.

Memory is also affected when a ne-at i ¢ method is called. This includes our code making a
call like

some(bj . somreMet hod(sonePar am

or the Objectdraw system calling one of the mouse event basdh our behalf.

¢ When the method is called, a chunk of memory is allocated wisi¢drge enough to hold
all parameters and local variables of the method, plus tipéicih*t hi s” reference which
directs the method to the object on which it is called, so it tcate the correct set of
instance variables. Note thathi s” is essentially another parameter, which is initialized to
the value before the.” in the method call. This memory will remain allocated onlytil
the method returns.

When ast at i ¢ method is called, the same procedures apply, except hbs” reference is set,
so the method has no access to instance variables of thewdtase it is defined. It does have
access to class variables, which are those variables #ratstives are declared with theat i ¢
qualifier, and which are shared among all instances of thescla

Active Objects

We have now seen how to get one set of commands to be execptatadly. But there certainly
are programs that have different things happening simedtasly. That is our next goal.

All of the classes we have defined so far have described {gEssbjects. They only do things
when they are told ta.€., because someone invokes one of their methods).

We can also creat&ctive objectsn Java. They can contain instructions (in a special metlatida
r un) that run even when the user doesn’t do anything with the mous

CSC 252 Problem Solving with Java Fall 2014

If you put a loop that goes on for along time in@mMVbuse. . . method, th&¥ ndowCont r ol | er
can’'t respond well to additional events because it is bushermouse-handling method. Instead,
we will put such loops in ther‘un” methods ofAct i ve(Qbj ect s.

To create arict i veQbj ect one must:

1. define a class thaekt ends Acti vebj ect”
2. define its constructor and sagt‘art () ” at the end.

3. defineapublic void run()” method.

The classAct i veQbj ect is part of the objectdraw library. It includes a number oftamee
variables and methods that are used to keep track of objéditt wan execute in parallel with each
other. The methodt art does some housekeeping which results in the creation of ahread
of control (or justthread), which then begins running threun method. Thus evaluatingt ar t

(or equivalentlyt hi s. start ()), eventually leads to the creation of a thread that exedhtes
r un method. When the method terminates, the thread dies, andgbet s no longer “active.”

Our first example is of falling balls in a window.
See Example: FallingBalls

Consider theAct i veObj ect in this program - theral | i ngBal | . We see that it does all
the things we said aAct i veObj ect is supposed to do. Its class header tells Java that this
class extendéct i veCbj ect. We have several constants and an instance variable to held t
Fi | | edOval that will be the actual ball.

The constructor includes the same functionality as thitkgstheTshi rt examples - it constructs
the objects that make up an instance of this class (in thes gast aFi | | edOval). The difference
is that it must end with at art () statement.

Ther un method contains a simple while loop that defines the ongantvity” ofaFal | i ngBal | .

The conditionbal | . get Y() < yMax is true as long as thbal | is on the screen. Notice
that the body of thewhi | e loop contains the statemeptuse(DELAY_TI ME) . When this is
executed, the thread pauses executiorDigt AY_TI ME milliseconds (thousandths of a second)
before going around to the next iteration of the loop to mdweekall by anothe¥_SPEED pixels
down the screen. If thpause statement were not in the loop the animation would take pdace
fast that we would not be able to see it. For each of our agmiawe will play with the value of
DELAY_TI ME until we get a speed of animation that looks the best. Foipdaiscular application,
we chose a value of 33. If the value DELAY_TI ME were 66, the ball would fall half as fast
(there would be twice as much delay between movements)ewahidlue of 11 would have the ball
falling 3 times as fast.

There is another, more technical, reason for includipgas e statement in the loop. Many com-
puters only have a single processor. Thus if two threadsdnresathey are both being run by the
same processor. In order to make it look as through both ang lben simultaneously, they take
turns. Different computer operating systems have diffenays of taking turns. Some automati-
cally trade off after a certain time interval (usually evéeyw milliseconds), while others wait for

4

CSC 252 Problem Solving with Java Fall 2014

one thread to pause before releasing control to the otheadhiWe will always include pauses in
every loop in the un method of amct i veQbj ect in order to ensure that they alternate turns
fairly.

Once the ball has finished falling off the screen there is malikeep it around. We calenoveFr onCanvas
to remove it. The un method then terminates, “deactivating” dtal | i ngBal | .

Notice that we can create more than one ball at a time. How thiesvork? Well, each time we
press the mouse, a brand new instance l6dkl i ngBal | is created. That instance has its own
copy of each instance variablebal | and ay Max.

Different “Activities”

There is no rule stating that akct i veObj ect must involve a constant motion of an object
or objects. In fact, we have an incredible amount of flextipiin what can be controlled in an
Act i ve(bj ect . Consider this example:

See Example: VanishingScribble

This program looks a lot like our scribble program from earlHowever, the objects that look like
regularLi nes that we draw in this one are reallgt i veQbj ect s that will cause théi nes to
go away after a period of time.

When we press the mouse, we decide if we are going to draw theerédble withFal | i ngLi ne
objects orFadi ngLi ne objects. Each is an extensionAdt i veCObj ect which will cause the
line to disappear at some point.

First, let'slook atthd-al | i ngLi ne. In many ways, itresembles th@l | i ngBal | object. We
draw something on the canvas, activate it, andrthe method moves it until it leaves the canvas,
at which point we remove it.

The difference here is that we've added some acceleratitve. LT he object controlled by the
Fal | i ngLi ne waits a bit, then slowly starts to move thé ne down the screen. To simulate
acceleration due to gravity, we have the speed increase %yeHth time we move the line a bit.
Once both endpoints have left the canvas, we remove.three and let thisAct i veObj ect
deactivate when theun method completes.

The Fadi ngLi ne does something a little different. ThActi veCbj ect extension doesn’t

move itsLi ne at all: it just changes its color. We start out with a blacleliwait a bit, then slowly

change the color from black, through the greys, until it lmees white. At that point, we remove it
from the canvas.

Building a “Pong” Game

Next, we'll build a pretty boring pong game (unlike theal Pong game which is incredibly excit-
ing), since the paddle can’t actually hit the ball, but it sakemonstrate that the paddle can move
at the same time that the ball falls.

See Example: PatheticPong

CSC 252 Problem Solving with Java Fall 2014

We build a playing area at the bottom of which we draw a padttes paddle will follow the x
position of the mouse as is moves within the window, subthé restriction that it always stays
within the playing area. Each time the mouse is clicked, a fadlimg ball is created at the top of
the playing area that starts falling.

Notice the extra work being done anMouseMove to make sure we never allow the paddle to go
outside the playing area. If the mouse’s x position goesaodteft or right, we draw the paddle at
the legal position (within the playing area) closest to theuse position.

How does Java manage both the paddle and the falling ballsteTis always one thread that
handles the mouse motion methodsy(onMouseMove), and a new thread is created each time
we create a ball. So this program can have multiple threadsatipg concurrently: one to move
the paddle and one to move each ball currently on the canvas.

Our first improvement will be to add the interaction betwelea paddle and a ball. If the ball
strikes the paddle (or vice versa), the ball should then beeeted. For simplicity, we’ll just
assume straight up and down motion of a ball for now.

The first question: what part of our program will detect thetect between the ball and the paddle?
We might think it should be the paddle that finds out if it is ontact with the ball, then tells the
ball to start moving in a different direction. Or that the I[dalows where it is and could ask the
paddle if it has come in contact.

Either way has the potential to work, but there are two factioat will lead us to choose the former:

1. We can have the ball check for contact with the paddle inits method, which will be
executing for as long as the ball is in existence. We can oalsetihe paddle check for
contact when it receives a mouse event. This would preclgdieoun detecting the case
where the paddle is stationary and comes into contact widdla b

2. There is one paddle through the life of the program andkhmwvn at the time we create
each ball. So the ball can be given information about the lgadben it is constructed. The
paddle, on the other hand, would need to know about all Hadisare created and check for
contact with each. It would also need to know when a ball cetsexist.

Therefore, we will pass information about the paddle to th#sbconstructor. When the ball
moves, it will check to see if it is in contact with the paddle.
See Example: LessPatheticPong

Here, theWw ndowCont r ol | er class is very similar. It only adds the new parameters requir
by theSi npl ePongBal | constructor.

TheSi npl ePongBal | istheFal | i ngBal | that has been enhanced to change direction (to go
up) when it comes in contact with the paddle, and to changetiim (to go down) if it reaches the
top of the playing area. It takes the paddle and the highast pbthe playing area as additional
constructor parameters and remembers these values far the iun method.

Ther un method now needs to keep track of the speed, which may beveasitnegative depend-
ing on which direction the ball is travelling. In additiontize motion, we check to see if the ball

6

CSC 252 Problem Solving with Java Fall 2014

has reached the top of the playing area. If so, we make suigathis travelling downward (pos-
itive Y speed). We also check to see if the ball is in contathwhe paddle using a new method
calledover | aps. If so, we make sure the ball is going to move upward (negatigpeed).

If the ball ever falls below the bottom of the canvas, it is omed and the un method returns,
deactivating this ball.

Our final enhancement, at least for now, is to add horizonttion to the ball, and to make it
bounce off the side walls

See Example: Pong

Our Pong class is almost identical toessPat het i cPong. The only difference is in what we
have to pass to our ball, now calledPangBal | . ThePongBal | now needs to know about the
boundaries of the playing area, which we can conveniendyige by passing ther anedRect
we callboundary.

The main things we need to be concerned about in the constraiet determining the boundaries
of the playing area and drawing the ball at its initial pasiti We determine the playing area
bounds from the geometry of th& anedRect passed in, with a little extra work to account for
the ball size for the right side (why?).

We then generate a randanposition within the playing board, and create the ball at gussition
just below the top of the board. Recall the mechanism for usieBandomclass’snext Doubl e
method to get random numbers in any range.

We don't get the ball moving until down in tireun method. There, we first choose initial speeds
in thex andy directions, again randomly. Then as we move the ball, welcteesee if we've hit
a wall or the paddle, adjust our speeds accordingly to tateeafethe bounce, and move the ball.

This is far from perfect, but somewhat playable. Probabéyrttost obvious flaw is that we always
simply reverse thg speed when the ball strikes the paddle, even if the ball tside instead of
the top. That doesn’'t seem very natural. We also have no waydtiple balls to interact with
each other — they simply pass through each other magically.

Talking to an Act i ve(bj ect

The Act i vehj ect s we have seen so far are created and then do their own thigig r(tin
method) without any further instruction from the main cladswever, we are not restricted in that
way. We can send messaged\t i ve(Cbj ect s just as we can send them to other objects.

Consider this minor enhancement to our pong game:
See Example: TiltPong

This one will allow us to give a little “nudge” to the most retly created ball by clicking the
mouse outside of the playing area. We do so by adding a methdde to thePongBal | class

and calling that method at the appropriate time in\@undowCont r ol | er , which is now called
Ti | t Pong. To give us an indication that this worked, thedge method will also temporarily
change the color of the ball to red.

CSC 252 Problem Solving with Java Fall 2014

In order to have the speed variables affected bynilnége method, they have been changed from
local variable ofr un to instance variables. Wherudge is called, thexSpeed andy Speed
variables are changed so that the next timenthiel e loop in ther un method moves the ball, its
speed will be different.

The only other change in tieongBal | class is to change the ball’'s color back to black each time
around thenhi | e loop in ther un method.

The changes to th&i | t Pong class are simple: a new instance variable in which we remembe
the most recent ball, and a call to the bafisdge method when the mouse is clicked outside the
playing area.

Graphics Images (and more advancedct i ve(bj ect s)
Our goal is this example:
See Example: FallingSnow

In order to achieve this, we first need to figure out how thosevflakes can be drawn.

Drawable Images
Consider this example:
See Example: Snowman

In the program above, we drag a picture of a snowman arourgttieen. The picture comes from
a “gif” file namedsnowran. gi f .

The image is certainly too complex to draw using our ObjeatDprimitives. Fortunately, we can
read an image from a file and save it as an object with typege. | mage is a built-in Java
class from the library ava. awt . Hence you need to make sure that any program usirage
importsj ava. awt . | mage orj ava. awt . *.

The first line of thebegi n method of theSnowman class shows how to do this when given a
“gif” file (a particular format for holding images on-line):

snowvanPi ¢ = get | mage("snowran. gif");

wheresnowManPi c is an instance variable declared to have typage. Downloading a “gif”

file can often be slow, so we usually will want to create an iefagm the “gif” file at the beginning
of a program and save it until we need it. If you download “difés in the middle of your program,
you may cause a long delay while the computer brings it in fediite on a local disk or fileserver.

While objects of clas$ nage can hold a picture, they can’t do much else. We would like to
create an object that behaves like our other graphics aoed, Fr anedRect) so that it can be
displayed and moved around on our canvas.

The classvi si bl el mage from the ObjectDraw library allows you to treat an image rolyg

8

CSC 252 Problem Solving with Java Fall 2014

as you would a rectangle. In fact, imagin&/iasi bl el mage to be a rectangle with a picture
embedded in it. You can do most things you can do with a retgaregcept that there’s a neat
picture on top.

To create a newi si bl el mage:
new Vi si bl el mage(anl nage, xLocation, ylLocation, canvas);

For examplepnew Vi si bl el mage(snowianPi ¢, 10, 10, canvas); would create an
object of typeVi si bl el mage from the image insnowiVanPi ¢ and place it orcanvas at
location (10,10), with size equal to the size of the imageittains.

If you associate a name with yoWt si bl el nage, you can manipulate it using some familiar
methods:

Vi si bl el nrage snowivan;
And then later:

snowvan = new Vi si bl el mage(snowanPi ¢, 10, 10, canvas);

snowivan. set Wdt h(124) ;
snowian. set Hei ght (144) ;

Our original snow man image is large: 619x718 pixels, but weisk him down to a more reason-
able size.

What do you think happens if we say:
snowivan. set Col or (Col or. green) ;

Nothing! It's not an error, but nothing is done for you eith8ecause the picture already has its
own colors, it wouldn’'t make sense to change it to a solid cdimilarly, the value returned by
snowivan. get Col or () is alwaysCol or . bl ack, no matter what colors are in the image!

The rest of the code for tH@nowman class is just a variation on the earlier programs that alidbwe
us to drag around squares and T-shirts.

Multiple Acti veQbj ect types

We’re now ready to consider the example:

See Example: FallingSnow

First consider clasSnow, which extendsA ndowContr ol | er. While it includes code for
loading the images of the snowflakes and draws the backgnoighare, the only indication that

9

CSC 252 Problem Solving with Java Fall 2014

something interesting is going on is in the metlwodvbused i ck. On each click, a new object
of typed oud is created. It is th€l oud object that is responsible for all those snowflakes. The
snowflake image is passed as a parameter t@ltloaid constructor.

First look back at the code for clagal | i ngBal | . A falling snowflake will be very similar,
except that the object falling will beVd si bl el mage rather than &i | | edOval . But there’s
more to it than this.

We created d&al | i ngBal | every time the user clicked the mouse. When the user clicks the
mouse now, the process of generating and dropping snowfladgiss. There’s another class
here: theCl oud, which we've also made afict i veCbj ect. A cloud is anAct i vebj ect

that continuously generates snowflakes. Each snowflake A& ahveQbj ect that, when con-
structed, floats down the screen.

Let's jump right to ther un method of theCl oud class. It starts by declaring a local vari-
able,snowCount , initialized to 0. The rest of the method iswhi | e loop which increments

snowCount , constructs &al | i ngSnow (more onFal | i ngSnowsoon!), and then pauses for
900 milliseconds before repeating. Tiei | e loop’s body will be run 150 times before stopping.

The constructor foCl oud saves its parameters as instance variables. Both will beedefed
the calls to theFal | i ngSnow constructor in the un method. Since the values of the formal
parameters go away at the end of the method or constructdrichwhey are declared, we need to
save them in instance variables.

The constructor also createsowGen, a random number generator used to determine where each
snowflake will be dropped and how fast it travels down theestre

Finally, the constructor callst art () , as required to activate oéct i veObj ect .

Going back to methodun, we will see below that the constructor féal | i ngSnow takes pa-
rameters which arelr awi ngCanvas on which to draw the image, therage of the snowflake,
adoubl e that determines how far from the left edge of the screen tbe/fiake will be located,
anotherdoubl e to indicate how fast the snowflake falls, and finally an integelicating the
height of the window.

Two of the actual parametersanvas andsnowf | akePi ¢ are values of instance variables
that were provided values by the constructoiGbioud. C oud simply remembers and passes
along these values féal | i ngSnowand never uses them in any other way. The other two actual
parameters are random values generatesliiowGen.

Let’'s now take a look at thBal | i ngSnowclass, anotheAct i veCbj ect .

The constructor remembers the speed and canvas in instaniablgs so that they can be used
later in ther un method, and then createsvasi bl el mage from thel mage of a snowflake.
Once the image has been embeddedVh ai bl el mage, we can move it around on the screen.
In fact, since we created the image at the coordinates (Q/® upper left corner of the screen, we
immediately move it to its correct x-coordinate and set #oprdinate so that the bottom of the
snowflake is off the top of the screen.

Why not just create the snowflake at the right position instdateating it at (0,0) then moving it?

10

CSC 252 Problem Solving with Java Fall 2014

Unfortunately, we cannot determine the dimensions\dfsi bl el mage until it has been created.
That is, we cannot get this information from themge used in constructing it. Thus we had to
first construct the snowflake before we could see how high & w&ad thus, how far up the screen
it needed to be located so that it would not be seen! We cowld bieated th&i si bl el mage
with x-coordinatex, but since we knew we were going to have to move it anyway, wedgeated

it at (0,0) and then moved it both across and up.

As usual, the last line in the constructor is the commsindr t () .

Ther un method ofFal | i ngSnowis quite simple. Itis a simple loop that pauses and then moves
the snowflake. It terminates when the snowflake is off theestrét then removes the snowflake
from the canvas.

When executing, this program contains several passive tshgexd may contain hundreds of ac-
tive objects, all running at once. There is an object comadmg to the main clas§now, that
loads the snowflake pictures and draws the scene. It resgomieuse clicks by creating an
object of clasCl oud. The creation of &l oud results in the creation of 150 objects of type
Fal | i ngSnow.

Making the wind blow

Suppose we want to extend this example to simulate a snowstth wind. The idea is that we
want each snowflake to have the x component of its velocityglaver time as the wind speed
and direction shifts around. We could have each snowflakeeraimle to side by random amounts,
but that would look less realistic. Snowflakes generallyradi/e together with the wind as it shifts,
so we'd like all of our snowflakes to respond in the same wap¢onind as it shifts.

There are some important design decisions here: shouldme liave the wind’s speed and direc-
tion part of the window controller class? We could try thatt kecall that the window controller’s
methods only occur when there are mouse events triggereahl8ss we only wanted the wind to
change only when certain mouse events occur, the wind waitinis own brain — it should be an
active object.

But then how does the wind have its effect on all of these fg@lBnowflakes? It would not be
reasonable to attempt to have the wind keep track of all okstimvflakes and have them each
move periodically. After all, there are snowflakes beingated and executing and leaving the
canvas all the time. That’'s a lot to keep track of. It would becmeasier to tell all of those
snowflakes about a single wind object, and each time eachflk@wnoves, it can “ask” that wind
object how much it should move side to side along with its deam movement.

See Example: WindyFallingSnow

Act i ve(bj ect recap

To recap, to create akct i veQbj ect you:

1. define a class that “extendst i veQbj ect”

11

CSC 252 Problem Solving with Java Fall 2014

2. define its constructor and sayart () atthe end.

3. define atleastpubl i ¢ voi d run() method.

To see why we include theause method call in thewvhi | e loop of Act i ve(Obj ect’s, look at
the behavior of a minor variant of the program where the ohnge is that we omit theause
in thewhi | e loop of clasCl oud.

The difference is that all of the snowflakes are generatdubwitpause, so they all essentially start
at once (though some are slower to fall than others). gdues e makes the animation much more
obvious. (What would have happened if we omitted the paudeeiRdl | i ngSnow class?)

12

