Computer Science 252

Problem Solving with Java
The College of Saint Rose

Fall 2013

Topic Notes: Recursive Structures and Methods

Recursion

Suppose you are asked to construct a new graphical objéed ¢aksted squares”. Such an object
would consist of a square enclosing a series of smaller squlve can do this:

See Example: NestedSquaresLoop

But there’s another way we can think about this problem. Rdti@T having a loop that draws our
all of our nested squares, we can break this down into twsstep

1. Draw the outermost square.

2. Draw the rest of the squares, which is itself a set of nesfedres.

This is arecursive way to approach this task. And we can do just this in our progra
See Example: NestedSquaresRec

At first, this might look like a ridiculous thing to do. How care construct &est edSquar esRec
object by constructing one square, then anoest edSquar esRec object? Isn't that like us-
ing the word you're defining in a definition? How do we stop?

The key here is that we only draw another square as long aigzétssspositive. Since each recur-
sive call to theNest edSquar esRec is passing a smaller value for tise ze parameter, we’ll
eventually get to a case whese ze is not greater than 0, in which case our constructor will do
nothing at all.

Recur sive Data Structures

Now let’'s make things a bit more interesting. Suppose thatvesat to be able to move the nested
squares in the same way we do a filled or framed rectangle.iFleaisy to do with this recursive
version as long as we have names for the objects we createaf\iaen use these names in our
usual methods.

See Example: NestedSquaresDrag

The only change we have made to the constructor is to give sidmée square (now called
out | i ne) and the rest of the nested squaresst . The reason for this is so that we can refer to
them in the other methods as needed.

CSC 252 Problem Solving with Java Fall 2013

Notice that the type of rest Mest edSquar es. Java has no problem with an instance variable
whose type is the same as the entire class. When a class hastancenvariable with the same
type as the class, we say that it represemesarsive data structure.

Thecont ai ns method is straightforward since we only need to check ifabel i ne contains
the point.

Thenove method requires a little more effort, but it is still veryaghtforward when you think
about it. We simply moveut | i ne by the requested offsets, and then mpest by those same
offsets. Other methods likeet Col or, noveTo, andr enoveFr ontCanvas would be written
similarly.

The basic idea is this: since we have a recursive data stajehethods manipulating it will also
be recursive. In this case, we have taken care of the nomsieepart 6ut | i ne) and then send
a recursive message to thest .

How could you do this if you didn’t want to do it recursivelyfdbu were to use a while loop you
would need to save the names of all of the squares! We'll see gt this can be a perfectly rea-
sonable solution, using arraysArr ayLi st s, butit’s certainly more complex than our recursive
solution.

Extending this theme a bit further, consider this example:
See Example: NestedSquaresSizes

Here, we enhance the functionality of tAéndowCont r ol | er class to add some Swing com-
ponents, and thBest edSquar es recursive object with a few new recursive methods.

First, in theNest edSquar esSi zes class, the Swing components include two that are familiar:
JBut t ons to allow us to set the color of and retrieve some informaéibaut the most recently
created nested squares, antBhi der that allows us to control the size of the next nested squares
to be created.

The new items in use here al¢abel s, which are probably the simplest of the Swing compo-
nents. We create them and add them to containers (one Bothegeer Layout . NORTH, two into
aJPanel that will be added to th&or der Layout . SOUTH). Two are just included to give
some indication of the lower and upper limits of the sliderd ahe other will later be used to
display some information when the “Get Info” button is pexks

The main functionality is similar to previous examples: hetmouse is pressed anywhere other
than inside the most-recently creatidst edSquar es, a new one is created, with a size as
determined by the value of the slider. If pressed in that mesently-created one, we start a
standard dragging operation.

The buttons both operate on the most-recently createdtofijee “Random Color” button sets the
color of the newest object to a randomly-chosed new coloe “Tet Info” button asks the newest
object for two pieces of information: the number of squate®nsists of, and the total perimeter
of all of the squares within the newest object. Those bitsfdfrmation are displayed back to the
user in theJLabel , updated with thset Text method.

The more interesting parts of the example are the new reeunsethods ofNest edSquar es.

2

CSC 252 Problem Solving with Java Fall 2013

Theset Col or method is very similar to theove method we saw before. To set the color of the
whole object, we set the color of the outermost squatd (i ne) then if there are more squares
referred to byr est , we set the color of the rest recursively.

The other two methods are a bit different. Rather than beingtomumethods like the ones above,
these are accessor methods: they compute and return sogethi

First, squar eCount . This method returns the total number of squafasafredRect s) that
make up the object. In many cases, an accessor method siatpiyns the value of an instance
variable, or maybe some simple arithmetic expression baisedew instance variables. But since
this structure was created and is stored in memory reclysthe answer to this seemingly simple
guestion is not readily available. So we need a recursiveoagp to this method. Our approach is
just like before, when we create or modify the object by tgkiare of the outermost square, then
the rest. Here, we count the number of squares that make wuteemost square (1, obviously),
and then figure out how many squares are used within the ragtt{us exactly what we are writing
a method to compute, conveniently enough).

Thet ot al Peri net er method is similar, except there is a bit more work to do to cotaphe
perimeter of the outermost square.

In both of these cases, we proceed similarly: we figure outdinéribution to the total of the outer-
most square (1 faquar eCount , the perimeter of the outermost squaretfot al Per i net er).

If there is no “rest”, we simply return that value. If therguge recursively compute the answer for
the rest, then add that to the contribution of the outermost.

Recursive Functions

The last 2 methods lead us to the more general notion of agsigeuiunction. We saw several
examples tied tdNest edSquar es, but they occur in many domains. Let's look at a program to
raise numbers to powers:

See Example: Powers

This program is a Java application, more like the programssaw prior to this course. Specif-
ically, it does not bring up a graphics window at all, and keaution starts in aai n method
instead of ébegi n method.

Putting all of that aside, we can see that the basic idea b¢oa¢ad in a couple of integers, a base
and an exponent, and then raise the base to that power. Triectte@e methods here, all of which
compute the same thing but in different ways.

The first,]| oopPower simply contains d or loop to multiplybase by itselfexponent times.
Correct, but not especially interesting.

We will focus on the others, firstecPower . How does this one work? Clearly, if we evaluate
r ecPower (3, 0), the conditionexponent ==0 is true, so the function should return 1. Sup-
pose instead we evaluatecPower (3, 1) . According to the function definition and the fact
that1! =0, we get that ecPower (3, 1) = 3xrecPower (3, 0), and we know the value of

recPower (3, 0) is 1. Thus the final answer 8 1 or 3. The key is that we are using the facts

3

CSC 252 Problem Solving with Java Fall 2013

thatb® = 1 andbe*™* = bxbe° to calculate powers. Because we are calculating complexnsowe
using simpler powers we eventually get to our base case.

A handy way of thinking about recursive programs is to thibkat having someone else handle
the recursive call. l.e., if | want to calculateecPower (3, 5) , | ask someone else to calculate
recPower (3, 4) and then, when they give me the ansv@dr, multiply that answer by 3 to get
the final answer 0243.

Using a simple modification of the above recursive functi@can get a very efficient algorithm
for calculating powers, shown inast RecPower . In particular, if we use either of the first two
functions, it will take 1024 multiplications to calcula®é®?*. Using a slightly cleverer algorithm
we can cut this down to only 11 multiplications!

In each of the first two functions, the number of multiplicas necessary is equal to the value of
the exponent. That is not the case here.

fast RecPower (3, 16) = fast RecPower (9, 8) /1l mult
= fast RecPower (81, 4) [l mult
= fast RecPower (6561, 2) [l mult
= fast RecPower (43046721, 1) [l mult
= 43046721 » fast RecPower (43046721, 0)
= 43046721 ~ 1 /1 mult
= 43046721

Thus it only took 5 multiplications (and 4 divisions by 2)ngf ast RecPower , whereas it would
have taken 16 multiplications the other way (and divisiopsviio can be done very efficiently in
binary).

In general it takes somewhere betwéeg (exponent) and2 x logs(exponent) multiplications to
compute a power this way. While this doesn’t make a differdocamall values of exponent, it
does make a difference when exponentis large. For exangotgutingf ast RecPower (3, 1024)
would only take 11 multiplications, while computing it thther way would take 1024 multiplica-
tions.

Why does this algorithm work? It works because it is based enfaowing simple rules of
exponents:

e base’ =1

e base®P+! — base « base™P

o base®®P = (hase?)XP
The key is that by rearranging the order of doing things inewveal way, we can cut down the

amount of work considerably! (Again it is possible to write tabove algorithm with a while loop,
but the above formulation is arguably easier to undersjand!

We can both write and understand recursive programs asvillo

4

CSC 252 Problem Solving with Java Fall 2013

1. Write the base case. Convince yourself that this works ctiyre

2. Write the “recursive” case.

e Make sure all recursive calls go to simpler cases than theyonare writing. Make
sure that the simpler cases will eventually get to a base case

e Make sure that the general case will work properly if all of tiecursive calls work
properly.

Recursive Structures as a Collection

We return to graphical examples to see more about ways we efamedand use recursive data
structures.

One of the earliest programs we wrote was a very simple dgapiiogram that allowed a user to
scribble with the mouse.

In writing the scribble program, we realized that a scriblves really just a bunch of tiny line
segments. When the user first pressed the mouse to draw, wktBavpoint as an initial “anchor.”
As the user dragged the mouse, we drew a tiny line from theangbint to the new mouse
position. Then we used the newer mouse position as our nekRban

The scribble program we wrote early in the semester way fagWverful for something so simple.

But it is definitely limited. In a more realistic drawing pragn, the user would undoubtedly want
more than the ability to draw scribbles. The user might wanhbve around the things they've
drawn, or might want to change their color, or perhaps evasesthem.

Suppose we wish to write a drawing program that allows yolntmse a mode: drawing, moving,
erasing, coloring (in a particular color: red, blue, yellawgreen). To use the program, choose a
mode, and then go to work. To draw, just scribble. To move dnhguor scribbles, select move,
and then drag the desired scribble with the mouse. To colaoriblbte, select a color mode and
then click on the scribble you want to color. Finally, to eraslick on the erase button to get you
into the right mode. After that, clicking on the drawing caswvill get rid of scribbles. Those that
you created most recently, will be erased first.

Let's consider what we need to do to begin to write the drawiroggram we've just described. We
know that any given scribble is simply a series of line segseBut in this program we need to
do more than just draw them. We need to remember them. Ther& esuple of problems with
this: First, to store all of the many line segments in a sisglébble, we would need an awful lot
of variables. Second, we have no way to predict how many Bgenents there will be in any given
scribble. Fortunately, the power of recursion can help ws.h&o see this, consider how we build
up a scribble: initially, a scribble is empty. When the usersges the mouse, they signal their
intent to draw a scribble, but there’s nothing there yet. d@nsas a mouse drag is detected, we
attach a new line to the existing (empty at first) scribbletiéiach subsequent drag, we attach a
new line segment to the existing scribble.

So a scribble is simply a line attached to a slightly smalteibble.

5

CSC 252 Problem Solving with Java Fall 2013

This notion should be familiar. We have already seen othamgses of objects that are con-
structed from slightly simpler objects of the same typeNest edSquar es object is simply a
Fi I | edRect with a smalleMNest edSquar es embedded inside of it; &cri bbl eisalLi ne
attached to a small&cr i bbl e.

Unlike with Nest edSquar es, we do not construct &cr i bbl e all at once — &cr i bbl e
needs to constructed piece by piece (or, to be more spddifite by Li ne) as the user drags the
mouse. To see how this is done, consider the constructdné®dr i bbl e class in this example:

See Example: SimplestRecScribbler

To build a scribble, we simply attach a new line to an exissagbble. This is simple, but we have
to be a little careful. When the first line is drawn, to what doattach it? To an empty scribble! To
construct an empty scribble, we simply pass to$kei bbl e constructor two parameter values
of nul I . The constructor remembers these as the values 6f itst andr est, i.e., the first
item in the scribble and the rest of the scribble.

Now each time a new line needs to be added to the scribblewith each drag of the mouse, we
construct a newer (bigger) scribble from the new line andtbdcurrent) scribble.

Using our Scribbles

We considered a very simple controller above, so that wedcfmadus on the task of building up
a scribble dynamically, as the user moves the mouse. At tirg,pve can consider how to make
use of the fact that we can now remember the current scribbterething we couldn’t do in our
scribble program at the beginning of the semester. INkst edSquar es a Scri bbl e is a
recursive data structure. Let’s consider how we can exgas8dr i bbl e class to add the ability
to move a scribble or to check for containment:

See Example: SimpleRecScribbler

Thenove method should look very familiar. Itis nearly identicaltove from Nest edSquar es.
To move a scribble, we simply move the first item in 8er i bbl e (aLi ne) and then we move
the rest, but only if th&cr i bbl e is not the emptysScri bbl e. If the Scri bbl e is an empty
one, we do nothing (this is the base case for the recursiamje 8hecking whether&cr i bbl e

is empty is useful in a number of different contexts, we watseparate method that checks just
this. Recall from above that we created an enfpty i bbl e by making itsfi r st andr est
variablesnul | . Thus checking for emptiness is simply a matter of checkihgtverf i r st is
nul | .

To check for containment, we check whether 8oz i bbl e is empty. If itis, we returrf al se
right away (this is the base case!). Otherwise, we checkeifpint is is contained in the first
item in theScr i bbl e (another base case!). If so, we retimnue and we'’re done. If not, we
need to check whether the point is contained in some othepp#re Scr i bbl e by invoking the
cont ai ns method on the est of theScri bbl e.

A Stack

CSC 252 Problem Solving with Java Fall 2013

Let's leave our scribbles for a moment, and move to stackiogdy
See Example: RecWoodPile

With each click of the mouse on the “Stack 'em” button, a neecpiof wood is stacked on the
top of the pile. Rather than simply visually changing theymeton the screen, this program has a
variable that allows it to remember the stack of wood. Letamine theSt ack class that is our
template for a “wood pile” object.

You should immediately notice that a stack of wood is veryilsinio a scribble! It is a recursive
data structure: &t ack is simply a piece of woodi ., aVi si bl el mage) on top of a smaller
St ack. A stack of wood is constructed but putting togetheviasi bl el rage and a smaller
stack of wood, as is illustrated in the controller for exagmphn emptySt ack is created in the
begi n method. Then each time the user clicks on the “Stack 'em”oboutive build a bigger
St ack out of a newVi si bl el mage and the old (smallert ack.

Next, let's look more closely at thet ack class. As we discussed abovestaack is very similar
to Scri bbl e, but it is also different, and the difference is reflectedha tethods for the two
classes. We likely think of &cr i bbl e, conceptually, as a single (complex) entity. But we think
of theSt ack as a collection of individual pieces of wood. Id wouldn’'t neakuch sense to move
the whole stack, for example. But we might want to add to it ¢laHican by using the constructor),
or | might want to take things off of it. TheenoveMost Recent method does just this. It has
a single pre-condition — that the stack isn’'t empty. The meéttloes two things: it modifies the
St ack so that it no long contains the item that was first; it alsonretuhat item so that the caller
of the method can do something with the item (if they chooje Ther enoveMbst Recent
method makes use of two other methogdst Fi r st andget Rest that return the values of the
instance variableki r st andr est , respectively.

While the examples we examined above were quite differeatethre some interesting attributes
that they share. Both&cr i bbl e and aSt ack can be represented by a recursive data structure.
In each case, we used an instance variable to keep trackwidsiarecently added item and another
to keep track of the rest. To build either, we started out hidimg an explicitly empty one and
then added to it. We'll see next that this general form of datacture is useful in many more
contexts.

Another Example

In considering theScr i bbl e andWbodPi | e examples, we oberved that both a scribble and a
pile of wood could be represented by classes that are venjasinBoth require us to be able to
represent a collection of items. In the case of a scribblenaed to remember a collection of
Li nes. In the case of a stack, we need to remember a collectidmh of bl el mages. In both
cases we need to be able to build the collections dynamieathat is, under the control of the
user. In both cases, we started by constructing empty ¢wliec Each time a new item needed to
be added, we constructed a new collection from the old onetendew item.

Our next example is to create a recursive data structurgtesent a list of balls for an animation.
With each click of the mouse, a ball is drawn on the canvas. WWhemouse exits the canvas, the
balls move, resulting in an animation that looks like a chraimction. When the mouse enters the

CSC 252 Problem Solving with Java Fall 2013

canvas, the canvas is cleared and we can start all over.
See Example: ChainReaction

In this case, we need to store a collection of balls. As eashbyadl is constructed, we need to add
it to a data structure. We also need to be able to access tnemte of the data structure (in order
to make them move). Clagal | Li st is used for this purpose.

You should immediately recognize the definition of this slal is identical in many ways to the
Scri bbl e andSt ack classes seen earlier.Bal | Li st has two instance variablds, r st and
rest. The assumption is thatBal | Li st will be built up one item at a time. The constructor
takes two parameters: one that is a new ball to be added, aecbadthat is an existing list to
which the addition is to be made.

Initially, a user will construct an emptal | Li st. Whenever a new ball is to be added (in
onMbusePr ess in our example), a new list is constructed by combining a neW Wwith the
existing list.

Now, the reaction part. When we invokeact onaBal | Li st ,itcreatesanewct i veObj ect
that makes all the balls move a little bit, one at a time.

In r un, we iterate over the elements of thal | Li st , one at a time untibal | Li st is empty.

We assign the first element of the listriext Bal | , move that balti st anceToMove pixels to

the right using smooth animation, and then step down théyistettingbal | Li st to be the rest
of the list after the first ball.

Linked Lists; what all these havein common

We've been very careful to note the similarities in the exempve've considered in this series
of examples. While scribbles, woodpiles, and balls look \@ifferent on the surface, the data
structures used to represent them have been strikinglyasimbviously this is more than just an
interesting coincidence. The type of data structure wesenbooking at is one that is useful in
many contexts. It is calledsngly linked list.

The name singly linked list might be self-explanatory, letslsay a little more about it. The reason
for calling this data structure a list is because it allowdaistore a list of items: lines, or wood
images, or balls. We call it singly linked because the way fiepresented allows us to traverse it in
one direction only. To “walk through” the list we always catesedf i r st first; then we stepped
through the list until we reached the end. We never movedvwackthrough the list.

When we build a general-purpose data structure to hold actimlieof items, there are certain
types of functionality we want them to have. We need to be &ble

e add a new item to the collection

e remove an item from the collection

tell whether the collection is empty

get at the individual items in the collection

8

CSC 252 Problem Solving with Java Fall 2013

While we didn’t need to implement all of these for all of our exales, we illustrated each of these
in at least one context.

Now let’s think about that drawing program we talked abowtrne start of this whole topic.
We've already seen how a single scribble can be represer@et what about a collection of
scribbles? A collection of scribbles (or&cri bbl eLi st as we’ll call it) is simply a list of
scribbles! How will it be used? We’'ll want to build an emptyeoimitially. Then each time a
scribble is drawn, we’ll need ot add it to the collection. @sionally a user will want to remove
one from the list. Finally, we’'ll need to occasionally gettla¢ individual items in the list — so
that the user can select one for moving or for coloring. Tleseall the types of methods we've
already seen illustrated.

