
Computer Science 252
Problem Solving with Java
The College of Saint Rose
Fall 2013

Topic Notes: Interfaces

Our next topic is a Java feature calledinterfaces. This topic is closely related to our recent discus-
sion of custom classes, which gave us good examples ofobject-oriented design.

This topic is also only tangentially related to an upcoming topic: Java’s Graphical User Interface
mechanisms. That is, while this topic “Interfaces” and the upcoming topic “User Interfaces” share
part of their name, the connection between the two topics is not very strong.

For now, we will study the strong connection between interfaces and object-oriented design.

In our discussion of design, we saw that an important goal wasto hide the details of how the
behavior of a class was implemented by keeping its instance variables private and then defin-
ing public methods that provided the ability to change or determine a limited set of aspects of
the object’s state. For example, when you modified the T-Shirt example to have more graphical
components, you were able to do that entirely within theTShirt class, without any changes to
theDrag2Shirts class. As long as you maintained a consistentpublic interfaceto theTShirt
class, that is, the method signatures of thepublicmethods were unchanged, theDrag2Shirts
class would still be able to use it in the same way, even thoughtheTShirt class was now doing
something different than it was before.

The public interface of the objects of a Java class can be concisely described by listing all of its
methods and describing their parameters. That is why we ask you to include such informations in
your designs.

Your designs are (quite deliberately) not actual Java code.It turns out, however, to be quite useful
to write a description of a classes interface in a form that isinterpretable as Java code by the
computer. Accordingly, Java’s rules of syntax permit such aspecification.

To illustrate the use of this new Java mechanism we will look at a fancier version of the laundry
sorter game you wrote. This version does a better job with object orientation and allows multiple
kinds of laundry items to be sorted.

See Example: ShirtsAndPants

In this case,Laundry.java is aninterface specificationrather than a regular Java class.

• Like a class definition, an interface specification is constructed out of a header followed by
a body enclosed within curly braces.

• The body consists of a list of method headers. Each header is terminated by a semicolon
(rather than being followed by a method body).



CSC 252 Problem Solving with Java Fall 2013

With this interface included in our program, we can now construct a more advanced version of the
laundry sorter.

Much of this program is very similar to what you did for the lab. However, instead of dragging
around aFilledRect and aFramedRect, we are dragging around either aTShirt orPants
object.

The code that handles the dragging, checking for the correctbasket,etc.., is otherwise unchanged
from my reference solution.

Herein lies the power of the interface construct. As long as we only call methods that are part
of the interface, we can interchange any objects that implement that interface and the rest of our
program can remain unchanged. Just like we could callmove, moveTo, andcontains on the
FilledRect andFramedRect that represented our laundry swatches, we can substitute inthe
objects from this example.

Interfaces let us write such highly flexible code.

In our new laundry example, two classes of laundry defined.TShirts andPants. Since they
both contains all the methods listed in ourLaundry interface, we can explicitly tell Java this in
the headers of the class declarations

public class TShirt implements Laundry

So long as we restrict ourselves to the methods defined by theLaundry interface, it doesn’t matter
what type of laundry we come up with in the future (maybe we want to addShorts next spring),
we can continue to use any program that uses theLaundry interface without changing it!

To tell Java that we want to use objects that implement theLaundry interface in our laundry
sorter, we can replace the declaration of the item variable in the window controller with a declara-
tion of the form:

private Laundry item;

When we write a declaration, remember that we are telling Javawhat sort of object the name may
be associated with. The declaration “private Laundry item” tells Java that item may be
associated with an object of any class that implements theLaundry interface.

So, Java will allows us to say either:

item = new TShirt( ... );

or

item = new Pants( ... );

2



CSC 252 Problem Solving with Java Fall 2013

since we have taught Java how to constructTShirt andPants objects. It allows us to assign the
returned reference to either of those objects to the same variableitem of typeLaundry since in
addition to beingTShirt or Pants objects, they are alsoLaundry objects (we told Java they
were when we said “implments Laundry”.

On the other hand, java will not allow us to say:

item = new Laundry( ... );

If you think about this a bit, hopefully it makes a lot of sense. In the specification of the interface
Laundry, we did not include a constructor. That is because in order toconstruct an object, we
need to know the details of how its state will be represented.The whole point of an interface,
however, is to focus on the interface through which the statecan be manipulated while ignoring
the details of how the state is represented.

On the other hand, given that Java knows that “item” will onlybe associated with things that
implement theLaundry interface, it will let us write commands like:

item.moveTo(...);

Further note that Java will not allow us to assign any old object with the right methods to the
“item” variable. In particular, even if the methods in theLaundry interface were a subset of
those provided byFilledRects, we could not say:

item = new FilledRect( ... );

since the declaration of the classFilledRect does not say:

public class FilledRect implements Laundry {

}

Also, note that we can use interface names as type names in parameter declarations.

Handling Keyboard Events
Java interfaces will arise in a number of contexts as we extend our graphical programs beyond the
simple “canvas” graphics that can respond only to mouse events. Our first such example will allow
us to have our programs respond to keyboard events. In particular, we will first consider the arrow
keys.

See Example: HandlingArrowKeys

Parts of this program are very familiar – we have a class thatextends WindowController,
it draws some ObjectdrawText objects in thebegin method. We focus on the new items:

First, at the top, we have two newimport statements:

3



CSC 252 Problem Solving with Java Fall 2013

import java.awt.event.KeyEvent;
import java.awt.event.KeyListener;

These are the items from the Java API that we will need to use. We could have done the more
generic

import java.awt.event.*;

which wouldimport everything fromjava.awt.event, including the two we need, but it
is generally good practice toimport only exactly what you need to avoid potential unexpected
name conflicts.

Next, we tell Java that our classimplements KeyListener. KeyListener is an interface
in the Java API, which requires that we define three methods:

public void keyTyped(KeyEvent e);
public void keyPressed(KeyEvent e);
public void keyReleased(KeyEvent e);

We can see the details at

Java API Documentation: java.awt.event.KeyListener at
http://docs.oracle.com/javase/7/docs/api/java/awt/event/KeyListener.html

Basically, we are saying that any class that implements this interface, thereby promising to provide
those three methods, can be used to handle keyboard events. That is, we can tell Java to use these
methods in this class any time a key is pressed, released, or typed (a press followed by a release).

Note that unlink the “onMouse” methods, where we could specify only those we cared about for a
particular program, we have to provide all three of these to be able to satisfy theKeyListener
interface.

The methods themselves look a lot like the mouse events we’vebeen working with all along.
Instead of receiving aLocation as their parameter, however, they receive aKeyEvent. This
KeyEvent object can then be used to determine the details of the key event that has occurred, and
our program can react accordingly.

We are just using a few of the capabilities of theKeyEvent class. We call itsgetKeyCode
method to retrieve anint code that tells is which key was pressed/typed/released. TheKeyEvent
class also provides a large collection of named constants called virtual key codes. In this example,
we are interested only in the arrow keys, whose codes areKeyEvent.VK UP,KeyEvent.VK DOWN,
KeyEvent.VK LEFT, andKeyEvent.VK RIGHT.

We can see all of the methods and virtual key codes at:

Java API Documentation: java.awt.event.KeyEvent at
http://docs.oracle.com/javase/7/docs/api/java/awt/event/KeyEvent.html

4



CSC 252 Problem Solving with Java Fall 2013

Lastly, we need to “attach” thisKeyListener class to the windows and/or other objects whose
key events we wish to receive. In this case, we add it to theWindowController class itself
(actually, theApplet that underlies it) and to ourDrawingCanvaswe know ascanvas, using
theaddKeyListener method of those objects.

5


