Computer Science 252

Problem Solving with Java
The College of Saint Rose
Fall 2013

Topic Notes: Interfaces

Our next topic is a Java feature calletierfaces This topic is closely related to our recent discus-
sion of custom classes, which gave us good examplebjett-oriented design

This topic is also only tangentially related to an upcomioid: Java’s Graphical User Interface
mechanisms. That is, while this topic “Interfaces” and theaming topic “User Interfaces” share
part of their name, the connection between the two topicstis@ry strong.

For now, we will study the strong connection between intefaand object-oriented design.

In our discussion of design, we saw that an important goal twdsde the details of how the
behavior of a class was implemented by keeping its instaac@bles private and then defin-
ing public methods that provided the ability to change oedatne a limited set of aspects of
the object’s state. For example, when you modified the Tt®immple to have more graphical
components, you were able to do that entirely withinTshi r t class, without any changes to
theDr ag2Shi rt s class. As long as you maintained a consispritilic interfaceto theTShi r t
class, that is, the method signatures offiid! i ¢ methods were unchanged, tbeag2Shi rt s
class would still be able to use it in the same way, even thdlgiShi rt class was now doing
something different than it was before.

The public interface of the objects of a Java class can beisigalescribed by listing all of its
methods and describing their parameters. That is why we @skoyinclude such informations in
your designs.

Your designs are (quite deliberately) not actual Java cliderns out, however, to be quite useful
to write a description of a classes interface in a form thahierpretable as Java code by the
computer. Accordingly, Java’s rules of syntax permit suspecification.

To illustrate the use of this new Java mechanism we will |ob& &ancier version of the laundry
sorter game you wrote. This version does a better job witbaitlgrientation and allows multiple
kinds of laundry items to be sorted.

See Example: ShirtsAndPants

In this caselLaundry. j ava is aninterface specificationather than a regular Java class.
e Like a class definition, an interface specification is canged out of a header followed by
a body enclosed within curly braces.

e The body consists of a list of method headers. Each headernsnated by a semicolon
(rather than being followed by a method body).

CSC 252 Problem Solving with Java Fall 2013

With this interface included in our program, we can now cangta more advanced version of the
laundry sorter.

Much of this program is very similar to what you did for the .lddowever, instead of dragging
around &i | | edRect and aFr anedRect , we are dragging around eitheT&hi rt orPant s
object.

The code that handles the dragging, checking for the copasitetetc., is otherwise unchanged
from my reference solution.

Herein lies the power of the interface construct. As long asonly call methods that are part
of the interface, we can interchange any objects that im@farthat interface and the rest of our
program can remain unchanged. Just like we couldrmalle, noveTo, andcont ai ns on the

Fi I | edRect andFr anedRect that represented our laundry swatches, we can substitthe in
objects from this example.

Interfaces let us write such highly flexible code.

In our new laundry example, two classes of laundry defiriEshi r t s andPant s. Since they
both contains all the methods listed in duaundr y interface, we can explicitly tell Java this in
the headers of the class declarations

public class TShirt inplenents Laundry

So long as we restrict ourselves to the methods defined lyathedr y interface, it doesn’t matter
what type of laundry we come up with in the future (maybe wettamaddShor t s next spring),
we can continue to use any program that used thendr y interface without changing it!

To tell Java that we want to use objects that implementLthendr y interface in our laundry
sorter, we can replace the declaration of the item variabiee window controller with a declara-
tion of the form:

private Laundry item

When we write a declaration, remember that we are telling \Jéna sort of object the name may
be associated with. The declaratigori vat e Laundry it enf tells Java that item may be
associated with an object of any class that implementt ghendr y interface.

So, Java will allows us to say either:

item= new TShirt(...);
or
item= new Pants(...);

CSC 252 Problem Solving with Java Fall 2013

since we have taught Java how to constiifshi r t andPant s objects. It allows us to assign the
returned reference to either of those objects to the sanelar t emof typeLaundry since in
addition to beingl'Shi rt or Pant s objects, they are aldoaundr y objects (we told Java they
were when we saidi“npl nent s Laundry”.

On the other hand, java will not allow us to say:
item= new Laundry(...);

If you think about this a bit, hopefully it makes a lot of senbethe specification of the interface
Laundry, we did not include a constructor. That is because in ordeptwstruct an object, we
need to know the details of how its state will be representlae whole point of an interface,
however, is to focus on the interface through which the statebe manipulated while ignoring
the details of how the state is represented.

On the other hand, given that Java knows that “item” will ohly associated with things that
implement the,aundr y interface, it will let us write commands like:

I tem nmoveTo(...);
Further note that Java will not allow us to assign any old dbyeth the right methods to the
“item” variable. In particular, even if the methods in thaundry interface were a subset of
those provided b¥i | | edRect s, we could not say:
item= new FilledRect(...);
since the declaration of the claSsl | edRect does not say:
public class FilledRect inplenments Laundry {

}

Also, note that we can use interface hames as type namesametar declarations.

Handling Keyboard Events

Java interfaces will arise in a number of contexts as we ebein graphical programs beyond the
simple “canvas” graphics that can respond only to mousetevenr first such example will allow
us to have our programs respond to keyboard events. In plartieve will first consider the arrow
keys.

See Example: HandlingArrowKeys

Parts of this program are very familiar — we have a classekhtiends W ndowControl | er,
it draws some Objectdrawext objects in thebegi n method. We focus on the new items:

First, at the top, we have two newrpor t statements:

3

CSC 252 Problem Solving with Java Fall 2013

i mport java.aw .event. KeyEvent;
i mport java.awt.event. KeyLi st ener;

These are the items from the Java API that we will need to use.cddld have done the more
generic

i nport java.aw.event. *;

which wouldi nport everything fromj ava. aw . event, including the two we need, but it
is generally good practice forpor t only exactly what you need to avoid potential unexpected
name conflicts.

Next, we tell Java that our classripl enent s KeyLi st ener . KeyLi st ener is an interface
in the Java API, which requires that we define three methods:

public void keyTyped(KeyEvent e);
public void keyPressed(KeyEvent e);
public voi d keyRel eased(KeyEvent e);

We can see the details at

Java API Documentation: java.awt.event.KeyListener at
http://docs. oracl e.com javase/ 7/ docs/ api/j ava/ am / event / KeyLi st ener . ht ni

Basically, we are saying that any class that implementsikesface, thereby promising to provide
those three methods, can be used to handle keyboard evéatsisTwe can tell Java to use these
methods in this class any time a key is pressed, releaseghent {a press followed by a release).

Note that unlink the “onMouse” methods, where we could dyemly those we cared about for a
particular program, we have to provide all three of thesectaltle to satisfy th&eyLi st ener
interface.

The methods themselves look a lot like the mouse events wiEes working with all along.
Instead of receiving &ocat i on as their parameter, however, they receiMéey Event . This
KeyEvent object can then be used to determine the details of the key thett has occurred, and
our program can react accordingly.

We are just using a few of the capabilities of tkeyEvent class. We call itget KeyCode
method to retrieve annt code that tells is which key was pressed/typed/releaseslK@hEv ent
class also provides a large collection of named constatiezicartual key codeslin this example,
we are interested only in the arrow keys, whose codekey&vent . VK UP, KeyEvent . VK DOV,
KeyEvent . VK LEFT, andKeyEvent . VK_RI GHT.

We can see all of the methods and virtual key codes at:
Java APl Documentation: java.awt.event.KeyEvent at
http://docs. oracl e.conijavase/ 7/ docs/ api / j aval am / event / KeyEvent . ht m

4

CSC 252 Problem Solving with Java Fall 2013

Lastly, we need to “attach” thikeyLi st ener class to the windows and/or other objects whose
key events we wish to receive. In this case, we add it tovihedowCont r ol | er class itself
(actually, theAppl et that underlies it) and to odr awi ngCanvas we know aganvas, using
theaddKeyLi st ener method of those objects.

