Computer Science 252

Problem Solving with Java
The College of Saint Rose
Fall 2013

Topic Notes: Collections

Our next major topic involves additional common mechanifmnsaming collections of items.

M otivation for Collections

Sometimes we have a lot of very similar data, and we wouldblago similar things to each datum.
For example, suppose we wanted to extend our “Drag2Shixeshple to have 4 shirts instead of
just 2.

See Example: Drag2Shirts

We could go through the program and everywhere werssShi rt andbl ueShirt, add 2
more variables and 2 more segments of code to deal with therehivts.

See Example: Drag4Shirts

That was not terribly painful, but a bit tedious and errorm@oNow, what if we wanted to create
10, 20, or 100 shirts to be dragged around the canvas. We’t aviaetter way to name the shirts
as a group.

We could create a recursive data structure to holdT@iri r t objects like we did in some recent
examples. This is a useful approach in many cases, but wenel consider some other very
common ways to manage collections of objects.

Java and other programming languages provide a number dianestns to help here. We will
consider two in Java. First, we will look at a Java class dalteAr r ayLi st , and later a lower-
level construct common to most modern programming langeatiedarrays. Each allows us to
use one name for an entire collection of objects.

TheJava ArraylLi st Class

Those of you who will go on to take data structures will ledoow@ a variety of ways that collec-
tions of data can be stored that vary in complexity, flexijitand efficiency. We will consider just
one of those structures here: ther ayLi st .

Arrayli st is a class that implements abstract data type provided by the standard Java utility
library.

Let’'s see how to use them through an example: we will replag&tnhames of Shi rt objects in
the “Drag4Shirts” example with a singhe r ayLi st that holds all 4.

See Example: Drag4ShirtsArrayList

CSC 252 Problem Solving with Java Fall 2013

This program has the same functionality, but the 4 variatdeshe TShi r t s has been replaced
by a single collection, aAr r ayLi st of TShi rt objects.

We consider each change that was made to the program to dessibeisage of aAr r ayLi st .

e First, we need to add dmport statement to the top of our program.
i mport java.util.ArraylList;

This allows us to use the class nafer ayLi st in the rest of the file and Java will know
we mean to use the one in thava. uti | package.

¢ Next, we declare an instance variable for dar ayLi st :
private ArrayLi st<TShirt> shirts;

This looks a little different than any variable declaratiwe have seen before. Since an
ArraylLi st can be used to hold objects of any type, we need to tell Java typa of
objects will be stored in this particul#dr r ayLi st. In this case, it'sTShirts. So we
place that type inside theand>. This is called aype parameter.

e Like most Java classes, we need to construct an instance ofabs in order use it. This is
done in the first statement of thegi n method:

shirts = new ArrayLi st<TShirt>();

This is much like other constructions we have seen, but wenageed to include the type
parameter so Java will give us &nr ayLi st that is set up to hold a collection @hi r t
objects.

e TheTShi rt instances are then created, and we need to insert each @®o tlayLi st .
This is done with thedd method:

shirts.add(shirt);

This will take theTShi rt namedshi rt and add it to the first available slotin ther ayLi st
namedshi rts.

Note that in this case, we are not requesting any specifi¢gitocavithin the Ar r ayLi st
for the shirt. We will later see that we can be more specifieher

Note also that we as users of tAer ayLi st do not know (though when you take data
structures, you'll have a pretty good idea) of what's goingreside theAr r ayLi st to add
the shirt. We just know that it knows how to do it.

When we're done withbegi n, theAr r ayLi st contains references to¥shi rt objects.

2

CSC 252 Problem Solving with Java Fall 2013

e In theonMousePr ess andonMbuseExi t methods, we need to access Ttghi rt ob-
jects within theAr r ayLi st . We do this with theget method:

TShirt shirt = shirts. get(shirtNum;

Here,shi r t Numis a loop index variable that will range from O to one less ttiennumber
of items in theAr r ayLi st . We know in this case that there are 4 items, but we can get that
information from theAr r ayLi st itself using thesi ze method, as done in tHeor loops:

for (int shirtNum= 0; shirtNum < shirts.size(); shirtNum++)

What we see here is that ti#e r ayLi st has assigned a number, often callediiaatex,
to eachTShi rt we added to thér r ayLi st, and we can pass that number to thest
method to get back a specifi&Shi rt from theAr r ayLi st.

It turns out that the first item we add is given index 0, the megiven index 1, and so on. If
we later wanted to get at the first one, we could say:

shirts.get(0);

but in many cases (like this one), we will access the itembiwik collection inside a loop,
passing in a loop index to thget method.

This is our first example of search operation on a collection — we are looking through each
object in the collection to find one that contains thecat i on. More precisely, this is a
linear search and we will say more about this later.

One of the great things about using a construct likeAanayLi st is that we can extend our
programs to keep track of a much larger number of objectse Mwant to have 10Shi rt s on the
canvas, we would definitely want to use a collection likedam ayLi st to keep track of them.

See Example: Drag10Shirts

Here, we also place the creation of thghi rt s into a loop, but just line them up in a row for
simplicity. If we wanted them to be organized into rows or & & fixed set of colors, we would
need to use a more complicated loop in fegi n method. (And we will do just that later.)

If we wanted to create 20 or 50 or 1d&hi rt s, we could do so by changing the loop in the
begi n method and the remainder of the code does not need to change.

ArraylLi st sin Custom Objects

One of the challenges we have seen with constructing cushpeats with any level of complexity
is that we need to have names for all of the graphical objeets@nstruct. When the object
includes large numbers of items, ideally created withinog|@nAr r ayLi st will come in handy
to help keep track of them.

CSC 252 Problem Solving with Java Fall 2013

First, we look at a program that doesn’t Usrer ayLi st s:
See Example: DrawRoads

This program draws little segments of roads when we clickntioeise. Nothing is new here — we
could have written this a while ago.

But now suppose we want to be able to drag one of these around.

We need to have names for all of the components of the roadesggn we can do things like
move it and check for containment of a point.

See Example: DragRoads
The enhancements to thé ndowCont r ol | er class are all very familiar.

It's in the RoadSegnent class that we make use of &nr ayLi st to hold the center stripes of
our road segment. Notice the same steps: declare a varighl@mwAr r ayLi st type that can
hold objects of the appropriate type, construct it withw, thenadd entries with the appropriate
types of objects.

In the constructor, we do the construction of thea ayLi st , then create the actual stripes.
In thenove method, we loop through the stripes, moving each one.

This is nice, but perhaps we want to combine this functioyalith that of the program where
we could drag around any of 10 shirts. Let’'s usefam ayLi st to keep track o&ll of the road
segments we've created, so we can daag segment, not just the most recently drawn one.

See Example: DragAllRoads

Here, in addition to having aAr r ayLi st to keep track of the components of one of the road
segments, we keep airrayLi st of RoadSegnent objects in theW ndowCont r ol | er
class.

Removing from an Arr ayLi st

We can augment the last example to remove each road segroenthie canvas and from the
Arrayli st. Aroad segment will be removed if it is being dragged whenrtioeise leaves the
window.

See Example: DragAllRoadsRemove

The new functionality is in thenMbuseExi t method of theDr agAl | RoadsRenove class.

If the dr aggi ng flag is true when the mouse leaves the window, the curremdgged segment
sel ect edSegnent) should be removed. We first remove it from the canvas, theove it from
theArrayLi st. We also setlr aggi ng back to false, since the object we were just dragging no
longer exists.

First, we will look at the removal from the list, which is dongth the Arr ayLi st’s r enove
method. We pass as a parameter the element we want to renmald,iais an element of the
list, it is removed. It is important to note that when we remaw element from aAr r ayLi st

CSC 252 Problem Solving with Java Fall 2013

with r enove, any subsequent entries will be “moved up”. That is, if adishtains 5 elements
(in positions numbered 0 through 4) and we remove the eleatgmbsition 2, theAr r ayLi st
implementation of enove will shift the element that was in position 3 into positionghd the
one that was in position 4 into position 3. This means we c#éinuse ourf or loop over the
numbers from O t®i ze() - 1 to visit all of our entries. In other words.enove does not leave
a “hole” at the index from which the element was removed.

The newr enoveFr ontCanvas method is mostly like the ones we have seen in previous exam-
ples: to remove the custom object, we remove each of its coerge. The difference here is that
we need to loop through th&r r ayLi st , get and therr enove each element. We also should
remove the individuaFi | | edRect s from theAr r ayLi st , which we do all at once with the

cl ear method.

We can also remove elements from Anr ayLi st by index rather than value. We will see
examples of this soon.

Other ArrayLi st methods

The examples above demonstrated just a few of the capebibfi theAr r ayLi st class: con-
struction,add, get , si ze, r enove, andcl ear .

The full documentation for thér r ayLi st can be found ahtt p://docs. oracl e. com
j avase/ 6/ docs/ api/javal/util/ArraylList. htm

Here are a couple of additional methods, some of which witheap in later examples.

e cont ai ns —determine if a given object is in the list
e i ndexOF — search for first occurrence of a given object in the list atdrn its index

e set —replace the contents at an index with a new element

A few more examples to bring some of this together:
See Example: MovingFlags

See Example: PongBricks

ArraylLi st sof Primitive Types

Java places a significant restriction on the use of primijipes as the type parameters for generic
data structures such as tAer ayLi st . The following would not be valid Java:

ArraylList<int> a = new ArraylLi st<int>();

The type in the<> must be an object type. Fortunately, Java provides objeetstyhat correspond
to each primitive type. A nt eger object is able to store a singlent value, aboubl e value
is able to store a singl@oubl e value, etc. So the declaration and construction above wuesd
to be:

CSC 252 Problem Solving with Java Fall 2013

ArraylLi st<Integer> a = new Arrayli st<Ilnteger>();

In older versions of Java, programmers would need to bewdometonvert back and forth between
values of the primitive types and their object encapsutatdio construct ahnt eger from an
i nt i, onewould need to do so explicitly:

a.add(new I nteger(i));
And to retrieve the nt value from anl nt eger, one would also do so explicitly:
a. get (pos).intValue();
However, recent versions of Java automatically conveswéen the primitive types and their ob-

ject encapsulating classes. This is caletbboxing when converting from primitive to “boxed”
encapsulating classes, amatounboxing when going back the other way.

However, the effective programmer should always keep irdrtiiat these conversions are occur-
ring, as there is a computational cost to each.

Another Example

Suppose we have air r ayLi st of Integer values, and someone (by a mechanism which is not
our concern) has asked us to write a method that will find thgekt value in théAr r ayLi st .
The following method will achieve this (we assume at least element in thé\r r ayLi st):

private static int findMax(ArrayList<lnteger> a) {

int max = a.get(0);

for (int i=1; i<a.size(); i++) {
i nt val a.get(i);
if (val max) max = val;

}

return nmax;

}

\%

Java Arrays

TheAr rayLi st is a Java class, provided as a standard utility with everg @avironment. But
it is built on top of a more fundamental programming languegestruct called aarray.

In mathematics, we can refer to large groups of numbers famele) by attaching subscripts to
names. We can talk about numbers n,,... An array lets us do the same thing with computer
languages.

Suppose we wish to have a group of elements all of which hapesTigi ngAMAJi g and we wish
to call the groug hi ngs. Then we write the declaration bhi ngs as

6

CSC 252 Problem Solving with Java Fall 2013

Thi ngAMAJi g[] things;

The only difference between this and the declaration of glsiitem of typeThi ngAMaJi g is
the occurrence of[“] ” after the type.

Like all other objects, a group of elements needs to be ateate

t hi ngs = new Thi ngAMaJi g[25] ;

Again, notice the square brackets. The number in parergl{2S¢indicates the maximum number
of elements that there are slots for. We can now refer to iddal elements using subscripts.
However, in programming languages we cannot easily setubgcsipts in a smaller font placed
slightly lower than regular type. As a result we use the uibiqs “[] ” to indicate a subscript.
If, as above, we definehi ngs to have 25 elements, they may be referred to as:

things[0], things[1l], ..., things[24]

We start numbering the subscriptsCatand hence the last subscript is one smaller than the total
number of elements. Thus in the example above the subsgogtem 0 to 24.

One warning: When we initialize an array as above, we onlytersits for all of the elements,
we do not necessarily fill the slots with elements. Actudhyg default values of the elements of
the array are the same as for instance variables of the saqrae lfyThi ngAMaJi g is an object
type, then the initial values of all elementsiigl | , while if it is i nt , then the initial values will
all be 0. Thus you will want to be careful to put the appropriate valirethe array before using
them (especially before sending message to them! — thBltid &Poi nt er Except i on waiting

to happen).

In many ways, and array works like &nr ayLi st , but we will see several differences.
Armed with this new construct, let’s revisit the shirt draggprogram to use arrays.
See Example: Drag10ShirtsArray

In this code, we we have a single array nanséd rt s. This array is declared as an instance
variable, constructed at the start of thegi n method, and given values (references to actual
TShi rt s) just after.

Then in theonMbusePr ess method, we loop through all of the array entries (as we didipre
ously with anAr r ayLi st) to determine which, if any, has been pressed. FinallgnikbuseExi t ,
we tell all of the shirts to move back to their starting pasis.

Let’'s see how this differs from th&r r ayLi st version.

e Our instance variable declaration looks a bit different.

CSC 252 Problem Solving with Java Fall 2013

e When we construct the array in thegi n method, we need to tell it how many elements
the array will hold (in this case, 10). With th# r ayLi st , we construct a list and we can
add as many things to it as we want. The array can only evertheldumber of elements
we provided when we constructed it.

e When we add items to the array, we need to specify the indexcékpl There is no way to
say “just add it to the end” the way we do wilnr ayLi st s.

e When we access array elements, we use the bracket notaticuncim tihe same way we use
theget method of théAr r ayLi st .

In this example, we have used an array to keep track of a tiolfeaf objects on the canvas. We can
also use an array to keep track of the components of a custtials we did withAr r ayLi st s.

An enhancement to this example that shows some of the beokditsays, we draw the t-shirts in
two rows and use a fixed array of colors for the shirts instéadralom colors.

See Example: Drag10ShirtsNicer

A few things to notice here:

e We have an array d@ol or s initialized to 10 pre-defined color names that we’ll usedor
10 t-shirts.

e The construction of the t-shirts takes place in a nestedtoopake it easier to organize them
into 2 rows of 5 shirts each.

Our next enhancement to this example is to draw and drag dr@@ishirts, now in 4 rows of 5.
See Example: Drag20Shirts

Most of the program works correctly just by changing the gadfithe constanlUM ROWS (yay
constants). But...the array of colors is not large enough.

We account for this by reusing the colors once we've run outis Ts accomplished with some
modulo arithmetic:

shirts[shirtNunj.setCol or(shirtColors[shirtNum % shirtCol ors.length]);

Another Example

Arraysof Non-graphical Types
There is no reason to limit our usage of arrays to graphicigoblypes.

The following is an example of a Java application (rathentaa Applet — it starts with aai n
method instead dfegi n and has no graphics canvas) that uses arrags of ng, doubl e, and
i nt.

CSC 252 Problem Solving with Java Fall 2013

See Example: GradeRangeCounter

There are a few items here we haven't used much this seméste8qanner) but which you
have seen before. There are also examples of arrays deeladeitialized ad i nal , and an
example of an array afnt allocated withnew.

Inserting and Removing with Arrays

We have already seen that there is quite a bit to keep trackhehwsing arrays, especially when
objects are being added. We need to manage both the size afrhyeand the number of items
it contains. If it fills, we either need to make sure we do n&grapt to add another element, or
reconstruct the array with a larger size.

As a wrapup of our initial discussion of arrays, let's coesitivo more situations and how we need
to deal with them: adding a new item in the middle of an arrayg Bemoving an item from the
end.

For these examples, we will not use graphical objects, justhers. Arrays can store numbers just
as well as they can store references to objects.

Suppose we have an arrayiait large enough to hold 20 numbers.

The array would be declared as an instance variable:
private int[] a;
along with another instance variable indicating the nunafeémt s currently stored i@:
private int count;

and constructed and initialized:

a = new int[20];
count = O;

At some point in the prograncount contains 10, meaning that elements 0 through® odntain
meaningful values.

Now, suppose we want to add a new item to the array. So far, weed@ne something like this:

a[count] = 17;
count ++;

This will put a 17 into element 10, and increment tdeunt to 11.

CSC 252 Problem Solving with Java Fall 2013

But suppose that instead, we want to put the 17 into elememicbyéhout overwriting any of the
data currently in the array. Perhaps the array is maintgitiea numbers in order from smallest to
largest.

In this case, we'd first need to “move up” all of the elementpasitions 5 through 9 to instead be
in positions 6 through 10, add the 17 to position 5, and therementcount .

If the variablei nser t At contains the position at which we wish to add a new value, laaichtew
value is in the variableal :

for (int i=count; i>insertAt; i--) {
a[i] = a[i-1]

}

a[insertAt] = val;

count ++;

Now, suppose we would like to remove a value in the middletebud of “moving up” values to
make space, we need to “move down” the values to fill in the ti@déwould be left by removing
the value.

If the variabler enoveAt contains the index of the value to be removed:

for (int i=renoveAt+1; i<count; i++) {
a[i-1] = a[i];
}

count - -;

The loop is only necessary if we wish to maintain relativeeor@mong the remaining items in the
array. If that is not important (as is often the case with aapbical objects), we might simply
write:

a[renoveAt] = a[count-1];
count - -;

In circumstances where we are likely to insert or removetinéomiddle of an array during its life-
time, it usually makes sense to take advantage of the higherfunctionality of theAr r ayLi st .

Array and ArrayLi st Summary

The following list summarizes the key differences and sanities between arrays aidd r ayLi st s.

Declaration To declare an array of elements of some t¥pe

T[] ar,

10

CSC 252 Problem Solving with Java Fall 2013

whereT can be any type, including primitive types or Object types.
And to declare a\r r ayLi st that can hold items of typé:

Arrayli st<T> al;

whereT must be an object type. If we want to store a primitive type,mest use Java’s
corresponding object wrappers (elgat eger when we want to store items of typent).

Construction To construct (allocate space for) our arraynaélements of typd':
ar = new T[n];

Once constructed, the array will always have spacafelements of typd — if we want a
larger or smaller array, we would have to construct a new one.

The array constructed will have the default value for theatygte stored in each entry. For
object types, all entries begin asil | . For primitive number types, they begin as 0. For
bool ean arrays, they begin dsal se.

To construct a\r r ayLi st :
al = new ArrayLi st <T>();

This Ar r ayLi st initially does not contain any values. Its size will be detered by the
number of elements we add to it.

Adding an Element To add an element to an array, we have to specify the positiainigh we
wish to add the new element:

ar[i] =t;

This will place the itent at positioni into our array.i must be in the range 0 -1 if we
constructed our array to hawveentries. If there was already some data stored in positjon
it will be overwritten witht .

If we want to add the item to the “end” of the array, that is, fin& unoccupied slot in the
array, we will need an additional variable to keep track efiamber of currently-occupied
slots. If this is callechSi ze, and we have been careful to make sureaBeze elements
in the array occupy slots 0 througlsi ze-1, we can add the element with:

ar[aSi ze] =t;
aSi zet++;

With anAr r ayLi st , theadd method takes care of this:

11

CSC 252 Problem Solving with Java Fall 2013

al . add(t);

Retrieving an Element To get an item from an array, we use the same notation. To putaiue
from positioni in the array into some variabte

t = ar[i];
Whereas with thé\sr r ayLi st , we need to call a method:
t = al.get(i);
Visiting All Elements To loop over all elements in the array:
for (int i=0; i<aSize; i++) {
t = ar[i];

/1l do sonething with t
}

and anArr aylLi st;

for (int i=0; i<al.size(); i++) {
t = al.get(i);
/1l do sonething with t

}

Two-Dimensional Arrays

We can create arrays to hold objects of any type, either loaséctypes like nt anddoubl e, or
instances of objects such bsage andFi | | edOval orTShirt.

Nothing stops us from defining arrays of arrays. To declarareay, each of whose elements is an
array ofi nt :

int[][] twoDArray;

While it is normally written without parentheses, we can khifithe above declaration as defining
t woDAr ray as having typgdint []) []. Thus each element 6fwoDAr r ay is an array of
ints.

Despite the fact that Java will treat this as an array of @;ree usually think about this as a two-

dimensional array, with the elements arranged in a two-dgiomal table so thatwoDAr ray[i][]]

can be seen as the element in itierow andjth column. For example here is the layout for a two-
dimensional array with 6 rows (numbered 0 to 5) and 4 columns:

12

CSC 252 Problem Solving with Java Fall 2013

o [* [2 | 3 |
a[0][0] [a[0][1] [a[0][2] |a[O][3]
a[1][0] [a[1][1] [a[1][2] |a[1][3]
a[2][0] [a[2][1] [a[2][2] |a[2][3]
a[3][0] [a[3](1] [a[3][2] |a[3][3]
a[4][0] [a[4][1] [a[4][2] |a[4][3]
a[5][0] [a[5](1] [a[5][2] |a[5][3]

g bW N L O

Viewed in this way, our two-dimensional array is a grid, mlikh a map or a spreadsheet. This is
a natural way to store things like tables of data or matrices.

We access elements of two-dimensional arrays in a manngastmthat used for one dimensional
arrays, except that we must provide both the row and colunagtess an element, giving the row
number first.

We create a two-dimensional array by providing the numbeowak and columns. Thus we can
create the two-dimensional array above by writing:

int[][] a = newint[6][4];

(Though as good programmers, you would define constantsdorumber of rows and the number
of columns.)

A nested or loop is the most common way to access or update the elemeatsvotdimensional
array. One loop walks through the rows and the other wallksutyin the columns. For example, if
we wanted to assign a unique number to each cell of our tweiatsnonal array, we could do the
following:

for (int row = 0; row < 6; rowt+) {
for (int col =0; col < 4; col++) {
a[row]j[col] = 4xrow + col + 1;

}

This assigns the numbers 1 through 24 to the elements of arrége array is filled by assigning
values to the elements in the first row, then the second rewaed results in:

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24

13

CSC 252 Problem Solving with Java Fall 2013

You could modify the above to be slightly more interestingcbynputing a multiplication table.

We could just as well process all the elements of column O fingn all of column 1, etc., by
swapping the order of our loops:

for (int col = 0; col < 4; col ++)
for (int row = 0; row < 6; rowtt)

For the most part, it doesn’t matter which order you chodsaygh for large arrays it is generally
a good idea to traverse the array in the same order that yogranming language will store
the values in memory. For Java (and C, C++), the data is storedviy, known asgow major
order. However, an two-dimensional array in FORTRAN is siarecolumn major order. You
will almost certainly see this again if you go on and take searlike Computer Organization or
Operating Systems.

Let's look at an example that makes use of a smatk(3) two-dimensional array: a tic-tac-toe
game.

See Example: TicTacToe

Most of the program is pretty straightforward, so we’ll fgcon the use of the two-dimensional
arrays and discuss some of the private helper methods thkat tima code simpler, especially when
checking for winning boards.

The array that represents the board is a two-dimensioray afi nt calledmar ks. Each entry
will contain one of three values that will indicate if the lcsl empty (0), contains an X (1) or
contains an O (2). Named constants make the code involveggthumbers easier to understand.

Several private helper methods are provided to draw thedarad the X’s and O’s. We will look

at a bit at theonMoused i ck method where the game is played. When the mouse is clicked and
it is determined which (if any) of the 9 spaces contain thekghioint, we check to see if the space

is occupied. If not, the array entry is set and the approprark is drawn on the screen.

From there, theheckGaneWbn method is called to see if this last move led to a win. If not,
we call thecheckAl | Fi | | ed method to see if all squares are now occupied, meaning the gam
ends in a tie.

A hopefully more interesting use of two-dimensional arrsy® manage the bricks in a breakout
game.

See Example: Breakout

This is a greatly-enhanced version of our last pong gameremiere are now a series of bricks
that get removed as the ball bounces off one of them.

The most relevant to the current discussion is the two-dsoeral array inth@®r i ckCol | ecti on
class.

Two-Dimensional M atrices

14

CSC 252 Problem Solving with Java Fall 2013

A very common use of two-dimensional arrays is the represiem of matrices. We will look at
an example of a class that represents two-dimensional eauatrices and provides some basic
operations on them.

See Example: Matrix2D
The class is capable of holding a square matrid@fibl e values of any positive dimension.

Comments within the example explain much of what is happeriiage in particular the use of the
two-dimensional array as an instance variable which stbeematrix entries, the use of exceptions
to handle error conditions, and thai n method that tests out the methods of the class.

15

