
Computer Science 225
Advanced Programming
Siena College
Spring 2022

Topic Notes: Keyboard Events

This brief document describes an example of using a KeyListener to receive and process key-
board events in a Java Swing program. You are very familiar with keyboard input to regular Java
applications, using, for example, a Scanner. We also looked briefly at using popup windows as
provided by JOptionPane in an earlier lab.

Here, we look at how we can handle the events generated when someone presses, releases, or types
a key when our Java Swing window has keyboard focus. In the graphical user interfaces of most
modern operating systems, the events related to keyboard activity are “delivered” to whichever
program’s window was most recently selected with the mouse or other pointing device. When that
window is something like a Terminal, Git Bash window, your word processor, etc., that program
is responsible for handling those keyboard events. When windows like the ones we’ve been using
(without giving it much thought) process keyboard events, they respond with the familiar function-
ality we are used to. For example, terminals such as Git Bash or BlueJ’s terminal window display
what we type and package it up so our Java programs can receive it as input.

This example

https://github.com/SienaCSISAdvancedProgramming/ArrowBall

shows how we can set up a Java Swing window to request and process keyboard events. The
process will look very familiar after all the work we’ve done using mouse event handlers.

The window that wishes to receive keyboard events needs to pass a reference to a class that im-
plements the KeyListener interface to its addKeyListener method. Note that we add this
to the JFrame rather than to the JPanel as we did with mouse events. As was the case with
most of our mouse event handling examples, we use the same class that creates the window as our
KeyListener, so this is passed as the parameter.

The KeyListener interface requires three methods: keyPressed, which is triggered each
time a key is pressed or held down, keyReleased, which is triggered when the key is released,
and keyTyped, which is triggered when a press-release of the same key had been completed.

In this example, we only care about keyPressed, so that one has a meaningful implementation.
The other two are required to satisfy the interface. There is also a KeyAdapter class analogous
to MouseAdapter if we only wish to override the methods we care about.

The only key presses we care about are the arrow keys. The KeyEvent object passed to our
keyboard event handlers includes information about which key was pressed. The KeyEvent has
a getKeyCode method that returns a virtual key code, a list of which you can find on the Key-
Event page in the Java documentation. We have a case in our conditional for each of the 4 arrow
keys. As you can see, when we press an arrow key, the Point defining the location of a ball drawn
in our graphics window is translated by a small amount depending on the key that was pressed. At
the end, we trigger a paint event so we can see the ball in its new position.



CSIS 225 Advanced Programming Spring 2022

One further note - if you are going to have multiple items in your JFrame that accept keyboard
input (perhaps a graphics window with a KeyListener and a JComboBox or a JTextField,
and would like to be able to use the tab key to move keyboard focus among them, you can add a
call such as

frame.setFocusable(true);

to the run method that is responsible for creating the JFrame and all of the components within
it.

2


