
Computer Science 225
Advanced Programming
Siena College
Spring 2020

Topic Notes: Animation with Collisions

These notes point out some features of an example that includes collision detection between graph-
ical objects.

https://github.com/SienaCSISAdvancedProgramming/Breakout

This is a simple “Breakout” game, where one or more balls bounces around a room, hitting, bounc-
ing off of, and removing bricks, with a paddle to keep the balls in the playing area. This program
requires collision detection between the ball and the paddle, and the ball and the bricks.

The only collision detection implemented is to see if a circle (the BreakoutBall) and a rect-
angle overlap in the Euclidean plane, as this is what is required to detect overlap between the ball
and either the paddle or a brick. This is accomplished with a static method in the Collision
class, which implements the algorithm as described at https://www.gamedevelopment.
blog/collision-detection-circles-rectangles-and-polygons/. We can eas-
ily enough write similar methods to detect overlap for other shapes.

Try out the CollisionTester program in this repository. It draws a square and a draggable
circle. Each time the window is painted, the circle is green if it is not overlapping the square, red
if it is. Try it out - this algorithm is nice and precise.

A Game Using Collision Detection
The Breakout program is playable, but its video game physics leaves something to be desired,
and lacks many features that would not be too difficult to add that would make the game much
more fun. But it serves our purposes.

The program has a number of other items of interest, including:

• It uses the threadgraphics package to simplify a bit of the code in the Breakout and
BreakoutBall classes. Note that we use the buildGUI method also to construct the
BreakoutPaddle and BrickCollection classes, and to create a repaint thread so we
don’t need to call repaint in various places throughout the code.

• Separate classes are used to manage the panel and creation of new BreakoutBalls (Break-
out), to handle the life of one ball (BreakoutBall), to manage the paddle (Breakout-
Paddle), and to manage the bricks (BrickCollection).

• The only mouse event handler in Breakout is mousePressed, which unconditionally
creates a new BreakoutBall. Nice improvements might be to allow only one (or a small
number) of balls to be in play concurrently, or to limit to a total number of balls before the
game ends.



CSIS 225 Advanced Programming Spring 2020

• The BreakoutPaddle repositions and paints the paddle, making sure it follows the x-
coordinate of the mouse pointer, but not letting the paddle leave the bounds of the window.
Note that this program has different mouse events delivered to different classes. We could
have put the mouseMoved into Breakout, but then it would have had to call a method of
BreakoutPaddle to reposition it. As it is, we have the mouseMoved right in Break-
outPaddle where we need it.

• The BrickCollection class is responsible for drawing the bricks, for knowing which
ones have been hit and destroyed (hence should no longer be drawn), and for checking which
brick, if any, is overlapping with the ball.

• In many ways, it’s the BreakoutBall class that drives the action of the game. As each
ball can move on its own, it needs to be able to check not only if it has hit the walls like
we saw in the BallTosser, but if it has hit the paddle or any of the bricks, and needs
to respond appropriately in each case. Therefore, it needs to know about the Breakout-
Paddle and BrickCollection, a reference to each of which is passed to Break-
outBall’s constructor and stored in instance variables. Every time the BreakoutBall
moves, it calls BreakoutPaddle’s overlapsBallmethod to see if it should bounce off
the paddle, and BrickCollection’s hitBrick method to see if it has hit and bounced
off a brick.

2


