Computer Science 225

Advanced Programming
SIENAcollege Siena College

Computer Science Sprlng 2017

Topic Notes: Recursion

By now, you are all getting pretty good at thinking about problems recursively and turning those
recursive algorithms into recursive methods.

Next, we want to think about recursion a bit. Think about the reursive methods you’ve written and
what they have in common and how they’re different. And we’ll talk about when it makes sense to
use recursion and when it’s best to use a good ol’ loop.

You have certainly noticed that courses in the Computer Science program tend to bring up recursion
over and over... You probably started with some mathematical problems (computing factorials,
powers, Fibonacci sequences), where it is often easiest to see how a problem can be cast in terms
of a smaller instance or subproblem. Then as you were continually asked to consider recursion in
more varied situations (e.g., operations on linked lists and tree structures), you were able to see
places where recursion is useful.

Hopefully as you have worked through these, you have noticed some of the common characteristics
of successful recursion, including that

1. recursion needs to stop

2. the code is reentrant

In order for recursion to stop, each call needs to make progress toward a base case.

Reentrant code can have multiple, simultaneous invocations without undesired effect on global
variables (i.e., instance variables). You would also need to ensure that values of local variables
from one invocation would not need to affect other invocations. It is important to keep in mind
that all invocations share a single copy of instance or class variables, and each invocation has its
own copy of parameters and local variables. Not to say that recursive calls should never modify
instance variables, but care must be taken.

One fact to keep in mind is that you never need recursion to solve any problem. Every recursive
program can be rewritten iteratively. At the worst, you can always simulate the recursion by
creating and managing your own stack to play the role of the call stack that’s keeping track of your
recursive calls and their parameters and local variables.

So when should we use recursion? Recursion comes with a price (all those method calls and the
stack to keep track of their parameters, local variables, and return information.

If a recursive process can just as easily be written as a simple loop, then (unless your instructor
forces you to use recursion) don’t use recursion! For example, we could find the largest value in
an array of integers recursively:

CSIS 225 Advanced Programming Spring 2017

public static int max(int[] a) {

return max(a, 0);

private static int max(int[] a, int startAt) {

if (startAt == a.length-1) {
return ala.length-1];

}
int maxOfRest = max(a, startAt+1l);
return (maxOfRest > a[startAt] ? maxOfRest : al[startAt]);

This is overly complex and is less efficient than a simple loop version:

public static int max(int[] a) {
int maxVal = a[0];
for (int 1 = 1; i < a.length; i++) {
if (a[i] > maxVal) maxVal = al[il;

}

return maxVal;

You might call that “dumb” recursion.

There’s also careless recursion. Consider three ways to compute a value to a power:

// compute the power using a good old fashioned loop
public static int loopPower (int base, int exponent) {

int answer = 1;

for (int 1i=0; i<exponent; i++) {
answer == base;

}

return answer;

// the straightforward recursive approach
public static int recPower (int base, int exponent) {

// our base case is exponent == 0
if (exponent == 0) {
return 1;

CSIS 225 Advanced Programming Spring 2017

// otherwise, we have to do some work, b n = b * b {n-1}
return base * recPower (base, exponent -1);

// a more efficient recursive approach, based on the idea
// that we can compute a power b~ {2n} as (b*b) "n
public static int fastRecPower (int base, int exponent) {

// base case is again exponent == 0
if (exponent == 0) {
return 1;

// now, see if the exponent is even or odd

Qo

if (exponent % 2 == 1) {
// it’s odd, so use straightforward recursion to get

// down to an even case
return base x fastRecPower (base, exponent - 1);

// if we got here, it’s even, so we can do better
return fastRecPower (base * base, exponent / 2);

The last one is good, but suppose instead we replaced the last line with the seemingly equivalent:

return fastRecPower (base, exponent / 2) =
fastRecPower (base, exponent / 2);

This will make two identical calls in a row, making the code much less efficient. Instead, we could
do:

int oneCall = fastRecPower (base, exponent / 2);
return oneCall % oneCall;

Or worse yet, consider the naive recursive method for computing a value in the Fibonacci sequence:
public static long fib(int x) {

if (x < 2) return 1;
return fib(x-1) + fib(x-2);

CSIS 225 Advanced Programming Spring 2017

Even though we have 2 different recursive calls, there is a huge amount of redundant computation.

Here we really don’t want recursion at all. It’s tempting to write this with an array:

public static long fib(int x) {
long vals[] = new longl[x];
vals[0] = 0;
vals[l] = 1;
for (int 1
vals[1]

I~

2; 1 < x; i++) |
vals[i-1] + vals[i-2];

}

return vals[x-1] + wvals[x—-2];

But even this is unneccesarily complicated. We don’t need that whole array, we just need the last
two values.

public static long fib(int x) {
long fibiminus2, fibiminusl, fibi;

fibiminus2 = 0;

fibiminusl = 1;

for (int i = 2; 1 <= x; 1i++) {
fibi = fibiminusl + fibiminus2;
fibiminus2 = fibiminusl;
fibiminusl = fibi;

}

return fibi;

Now we only need to remember 3 values no matter how large x is.
In many cases, recursion is very appropriate and makes for an elegant way to approach a problem.

You have almost definitely seen many recursive methods on tree structures. A recursive data struc-
ture naturally lends itself to recursive methods.

A classic example you’ve probably seen before is the Towers of Hanoi problem.
See Example: Hanoi
Another example of a problem naturally solved by recursion is bin packing.

See Example: BinPacking

