
Computer Science 225
Advanced Programming
Siena College

Spring 2017

Topic Notes: Files and Exception Handling

You have been using file input and output in your Java programs almost since the beginning of

your programming careers. You are most likely familiar with using the Scanner class to read

files and the PrintWriter class to write them. We will be looking more carefully next at some

of the issues that arise when dealing with files in Java.

The File class

Whichever of Java’s mechanisms you have used to work with files, you have encountered the

java.io.File class. However, it is unlikely that you did much more than to construct a File

object and then pass it to the constructor of a Scanner or PrintWriter.

See the API documentation for this class to see all of the other features and functionality of

java.io.File.

See Example: FileMethods

Exceptions

A complication of working with files is that things can sometimes go wrong. A file might not

exist, or you might not have the privileges to create a file in a given location. In Java, such error

conditions are often dealt with by throwing exceptions, since the part of the code that detects the

error might not be able to handle the error in a manner that is appropriate to all situations.

When working with files, programmers sometimes just have their own main (or other) method

include a throws clause which passes the error to the caller. When done in a main method, this

results in the program crashing and an error message and call stack trace being printed.

It is usually better to handle the exception by placing the code that could throw an exception inside

a try block, with an appropriate catch block following that defines an exception handler for

that type of exception. Code that you want to execute even if an exception handler happens can be

placed in a finally clause.

See Example: CatchExample

A better way to handle the closing of your files in the event of exceptions is to use the try with

resources form of exception handling:

See Example: CatchExampleWithResources

Any resource opened in the trywhich implements the AutoClosable interface (which requires

an appropriate close method to be defined) will have that close method called as necessary.



CSIS 225 Advanced Programming Spring 2017

User-Defined Exceptions

You can (and often should) design your own Java classes to throw exceptions when appropriate.

By doing so, you allow the program that is using your class to handle the exception in a way that

is appropriate to its usage. For example, if you have an implementation of a linked list where

someone asks to get an item that does not exist, it is better to throw an exception rather than just

print an error message or, worse yet, terminate the entire program.

In some cases, you can use one of the many exception types that are defined by the standard Java

API. In other cases, you might define your own:

See Example: Matrix2D

2


