Computer Science 220

Assembly Language & Comp. Architecture
SIENAcollege siena College

Computer Science Fall 2011

Topic Notes: MIPS Programming

We spent some time looking at the MIPS Instruction Set Aettiitre. We will look at the ISA itself
more carefully when we consider its implementation. But nexe will learn how to program in
MIPS assembly language.

Our arsenal of MIPS assembly instructions now includes:
e and $a, $b, $c

e andi $a, $b, n
or $a, $b, $c
eori %a, $b, n
nor $a, $b, $c
beq $a, $b, L

e add $a, $b, $c
sub $a, $b, $c
addi $a, $b, n
lw $a, n($b)
sw $a, n($h)
sl $a, $b, n

bne $a, $b, L
slt $a, $b, $c
o L

e srl $a, $b, n

e lui $a, n

Control Structures in MIPS Assembly

Suppose we want to implemenhi | e loop in MIPS assembly. Consider the high-level language
code:

whi | e (a! =b)
a += i;

wherea is stored in registe$s0, b in $s1 and the incremerit is in $s2.

Our MIPS assembly code might look like this:

Loop: beq $s0, $s1, EndLoop # if a==b goto EndLoop
add $s0, $s0, $s2 # a = a + i
] Loop # goto Loop

EndLoop:

code after |loop ...

CS 220 Assembly Language & Computer Architecture Fall 2011

Note that we use bBeq instruction here as we want to branch in the case where wengetavish
to execute the contents of the loop.

Now consider a slightly more complicated loop:

while (a[i] == k)
o+=

We need to deal with an array access here. Suppose we haveimeaddowing register assign-
ments:
The start of arrap isin$s3,i isin$s0, k isin$s1, andj isin$s2. All arei nt values.

One way to implement this code would be:

LoopTop: sl $t0, $s0, 2 #t10 =i * 4
add $t0, $t0, $s3 # t0 = address of afi]
| w $t1, O($t0) # 11 = contents of ali]
bne $t1, $s1, EndLoop # if a[i] !'= k, goto EndLoop
add $s0, $sO, $s2 # i =i + j
] LoopTop # junp back to the top of the | oop
EndLoop:

code after loop ...
A few notes:
e We need to multiply by 4 to get the correct offset, since we're assurmanig an array of

word-sized values.

¢ We might be tempted to write
| w $t1l, $t0($s3)

to access the value at an offset®tfO from our base registes3. But that is not valid
MIPS - the offset part of thé w andsw instructions needs to be a constant, not a register.
The MIPS designers could have provided such an instruciiovo(ld be R-format instead

of I-format), but they chose not to.

Before we can complete our next example, we need a couple dfaadd instructions — reading
and writing single bytes from memory.

These instructions,b for load byte and b for store byte, work just like thewandswinstructions
except that only single-byte values are processed.

I b $a, n($b)

CS 220 Assembly Language & Computer Architecture Fall 2011

Loads the single byte at an offset mffrom register$b and stores itsign-extended, into register
$a.

sb $a, n($h)

Stores the byte in the bottom 8 bits of regiskarinto memory at an offset af from registei$b.

String Processing Examples

Armed with these instructions, we can write our next examplestring copy function like C’s
strcpy:

strcpy(dest, src);

Recall that C strings are terminated with a null (0) character

For now, we’'ll just look at the main loop of this function. Asse registeffs1 holds the address
of the start of thelest string and tha$s?2 holds the address of the start of thec string.

Our task is to write a loop that copies characters (bytesh fitee source string to the destination
string.

LoopTop: Ib $t0, 0(%$s2) # tenp reg = char at $s2
sb $t0, O(%$sl) # char at $sl1 gets tenp reg
addi $s2, $s2, 1 # increment $s2
addi $s1, $s1, 1 # increment $sl
bne $t0, $zero, LoopTop # branch if we didn't just copy a null

For another example:

char a[11];

: put sonething in a ...

for (i=0; 1<10; i++) {
af[i+1] = a[i];

}

Assuming we will usess0 for i and that$s1 contains the address af here’s one way to write
this:

add $s0, $zero, S$zero # i=0

For Loop: slti $t1, $s0, 10 #i<10 ?
beq $t1, $zero, LoopEnd # if done, branch out
add $t2, $s0, $s1 # t2 gets address of afi]

3

CS 220 Assembly Language & Computer Architecture Fall 2011

I b $t3, 0($t2) # 13 gets a[i]

sb $t3, 1($t2) # a[i+1] gets t3

addi $s0, $sO, 1 #Hoi++

] For Loop # back to check | oop condition

LoopEnd:

MIPS Subroutines and Programs

You are all familiar with function/method calls in high-ieManguages. In assembly language, we
usually refer to these asibroutines.

The idea is the same as a function or method call — the progranches from its sequence of
instructions to execute a chunk of code elsewhere, themseta continue where it left off.

Moreover, we expect that the values (Hutual parameters) we pass to the subroutine are properly
passed to the correspondihgr mal par anet er s in the subroutine. We expect that appopriate
space is allocated for the subroutine’s local variabled amy return value from the subroutine is

returned to the caller, with the opportunity to store or tse i

As assembly language programmers, we need to manage aditaaimplexity.

We’ll now look at how to write and call subroutines in MIPS asgly.

Special Registers and Instructions

Recall that there are several registers reserved to helpdugbroutine calls:

e $a0-%a4: argument registers —a place for the caller to place vatussrid to the subroutine.

e $vO0, $v1: return value registers — a place for subroutines to retalwes to the caller.

e $ra: return address register — where to resume executing thex edlen the subroutine is
finished.

We also have a couple of special jump instructions:

e Jump and Link:
j al address

This instruction puts the address of the next instructid®#) into registesr a, then jumps
to the address.

This is a J-format instruction, just like the standard jumgtiuction |).

e Jump to Register:

CS 220 Assembly Language & Computer Architecture Fall 2011

jr %$a

Jumps to the address specified in the given register.
This is an R-format instruction.

Assuming the subroutine hasn’t changed $ne register, this can be used to return from
the subroutine.

Registers and the Stack

We said previously that the “s” registe$s 0-$s7 are the ones assigned to variables and the “t”
registersbt 0-$t 9 are temporary values.

This becomes important when we start looking at subroutiflee accepted convention for register
use by subroutines:

e $t 0-$t 9 are always available for use by a subroutine

— if a subroutine calls another subroutine, it must assumithieacalled subroutine will
modify $t 0-$t 9.

— if this is a problem for the calling subroutine, it should sany values it has ifit O-
$t 9 to memory and restore them after the subroutine call.

e $s0-$s7 should be unchanged by a subroutine call

— if a subroutine calls another subroutine, it can expectataas in$s0-$s7 to remain
upon return.

— if the called subroutine wishes to make use$sf0-$s7, it should save the caller’s
values in any of these registers it will use in memory, thestare them before return.

Since subroutines can be called by anyone, we don’t knowiwisitcregisters, if any, are important
to the caller. So we have to save these if we use them.

So where do we save values in memory when we need to save therttf2 ack.

The stack is a section of memory dedicated to saving registenanage subroutine calls.
We have a special regist®sp called thestack pointer that indicates théop of the stack.

The stack grows and shrinks as registers are saved andegbstiating a program’s execution.

If we have a subroutine that will need to make usebeD, $s1 and $s2, we need to do the
following at the start of the subroutine’s code:

addi $sp, $sp, -12 # make roomfor 3 4-byte val ues
SwW $s0, O(S$sp) # push sO
SW $s1, 4(%sp) # push sl
SW $s2, 8(%sp) # push s2

5

CS 220 Assembly Language & Computer Architecture Fall 2011

Then before returning:

| w $s2, 8(%sp) # pop s2
I w $s1, 4($sp) # pop sl
[w $s0, 0($sp) # pop sO
addi sp, Ssp, 12 # restore the stack pointer

Note that we “pop” in the opposite order as we “push”.

A First Complete Subroutine

Let’s return to our string copy code:

LoopTop: Ib $t0, 0($s2) # tenp reg = char at $s2
sh $t0, O(%$sl) # char at $sl gets tenp reg
addi $s2, $s2, 1 # increment $s2
addi $s1, $s1, 1 # increment $si
bne $t0, $zero, LoopTop # branch if we didn't just copy a null

In order to make this a subroutine, we need to get values fhensaibroutine argument registers
and save and restore values of any “s” registers we decidesto@ur code becomes:

strcpy: addi $sp, Psp, -8 # make space for 2 words on the stack
SW $s2, 4(%sp) # save s2
swW $sl, O(S$sp) # save sl
add $s1l, $a0, $zero # copy arg0 into sl
add $s2, $al, $zero # copy argl into s2
LoopTop: |Ib $t0, 0($s2) # tenp reg = char at $s2
sh $t0, O(%$sl) # char at $sl1l gets tenp reg
addi $s2, $s2, 1 # increment $s2
addi $s1, $s1, 1 # increment $si
bne $t0, $zero, LoopTop # branch if we didn’'t just copy a nul
| w $sl, O(S$sp) # restore sl
| w $s2, 4(%sp) # restore s2
addi $sp, $sp, 8 # restore sp
jr $ra # return from subroutine

Note that we could so something simpler here: save and eB&f} and$al and use those in
place of$s1 and$s2 throughout.

A Recursive Example

We will develop a MIPS assembly subroutine to implement gtieding C function:

6

CS 220 Assembly Language & Computer Architecture Fall 2011

int factorial (int x) {
if (x<1l) return 1;
return x » factorial (x-1);

Since this subroutine calls another subroutine (itselfheed to savér a and any temp registers
we care about before making the recursive call.

We will assume a subroutimaul ti pl y exists and we will use that to do our multiplication to get
extra practice with subroutines.

Here is some code for this:

factori al :
make space for 2 words on the stack
addi $sp, $sp, -8

save $ra and $a0 on the stack
sSw $a0, 4(%sp)
SW $ra, 0O(S%sp)

slti $t0, %al0, 1 #is x < 1?
beq $t0, $zero, L1 # if no, skip over if part

x >= 1, just return 1
addi $v0, $zero, 1 # return value is 1

we could restore $a0 and $ra but we know t hey haven’t
changed when we take this quick exit, so let’s not

but we still need to put $sp back the way we found it
addi $sp, $sp, 8
jr $ra # return to caller

here, x>=1 so we need to nake a recursive call
L1: addi $a0, $a0, -1 # get x-1 for the paraneter
j al factori al # recursive call, will put answer in $vO

W now want to set up for the multiply, but we destroyed $a0
above, but have it on the stack, so let’'s load it

[w $a0, 4(%$sp)

add $al, $v0, S$zero # put factorial (x-1) result into $al

j al mul tiply # multiply $a0+$al, put result in $vO

$v0 i s where we want our answer, so no work there
but multiply could have changed $a0 and did change $ra
| w $ra, O($sp) # restore $ra

CS 220 Assembly Language & Computer Architecture Fall 2011

| w $a0, 4(%sp) # restore $a0
addi $sp, $sp, 8 # restore $sp
jr $ra # return to caller

Trace through this with the cdilact ori al (3) .

Another example: arraycmp

Advanced Stack Management

MIPS makes life easy for many subroutines: if the paramet@nde passed in tleregisters, the
return value provided in the registers, and all local variables can be stored andt registers,
little management of the call stack is needed.

Yes, we need to save registers when we need to use saegisters or make a subroutine call.
But with other ISAs and with more complex subroutines even IR® there is more to it.

For more than 4 parameters, or for parameters that do notdiBRybit register:

e the caller is responsible for pushing those parameterstbetetack before calling the sub-
routine,

e the subroutine (the “callee”) will find those parametersha proper location on the stack,
and

e the caller will pop the parameters from the stack upon return

If we have more local variables than fit in registers, or if gavhour local variables are structures or
arrays, space may also be allocated on the stack to holdaksss. The subroutine is responsible
for management of the stack to make space for these localbkasi and to restore the stack to its
original state when finished.

The section of the stack used for a procedures parameteed, Variables, and saved registers is
called theprocedure frame, or call frame or activation record of the procedure.

