
Computer Science 220
Assembly Language & Comp. Architecture
Siena College
Fall 2011

Topic Notes: MIPS Programming

We spent some time looking at the MIPS Instruction Set Architecture. We will look at the ISA itself
more carefully when we consider its implementation. But next, we will learn how to program in
MIPS assembly language.

Our arsenal of MIPS assembly instructions now includes:

• add $a, $b, $c

• sub $a, $b, $c

• addi $a, $b, n

• lw $a, n($b)

• sw $a, n($b)

• sll $a, $b, n

• srl $a, $b, n

• lui $a, n

• and $a, $b, $c

• andi $a, $b, n

• or $a, $b, $c

• ori $a, $b, n

• nor $a, $b, $c

• beq $a, $b, L

• bne $a, $b, L

• slt $a, $b, $c

• j L

Control Structures in MIPS Assembly
Suppose we want to implement awhile loop in MIPS assembly. Consider the high-level language
code:

while (a!=b)
a += i;

wherea is stored in register$s0, b in $s1 and the incrementi is in $s2.

Our MIPS assembly code might look like this:

Loop: beq $s0, $s1, EndLoop # if a==b goto EndLoop
add $s0, $s0, $s2 # a = a + i
j Loop # goto Loop

EndLoop:
... code after loop ...

CS 220 Assembly Language & Computer Architecture Fall 2011

Note that we use abeq instruction here as we want to branch in the case where we no longer wish
to execute the contents of the loop.

Now consider a slightly more complicated loop:

while (a[i] == k)
i += j;

We need to deal with an array access here. Suppose we have madethe following register assign-
ments:

The start of arraya is in $s3, i is in $s0, k is in $s1, andj is in $s2. All areint values.

One way to implement this code would be:

LoopTop: sll $t0, $s0, 2 # t0 = i * 4
add $t0, $t0, $s3 # t0 = address of a[i]
lw $t1, 0($t0) # t1 = contents of a[i]
bne $t1, $s1, EndLoop # if a[i] != k, goto EndLoop
add $s0, $s0, $s2 # i = i + j
j LoopTop # jump back to the top of the loop

EndLoop:
... code after loop ...

A few notes:

• We need to multiplyi by 4 to get the correct offset, since we’re assuminga is an array of
word-sized values.

• We might be tempted to write

lw $t1, $t0($s3)

to access the value at an offset of$t0 from our base register$s3. But that is not valid
MIPS - the offset part of thelw andsw instructions needs to be a constant, not a register.
The MIPS designers could have provided such an instruction (it would be R-format instead
of I-format), but they chose not to.

Before we can complete our next example, we need a couple of additional instructions – reading
and writing single bytes from memory.

These instructions,lb for load byte andsb for store byte, work just like thelw andsw instructions
except that only single-byte values are processed.

lb $a, n($b)

2

CS 220 Assembly Language & Computer Architecture Fall 2011

Loads the single byte at an offset ofn from register$b and stores it,sign-extended, into register
$a.

sb $a, n($b)

Stores the byte in the bottom 8 bits of register$a into memory at an offset ofn from register$b.

String Processing Examples

Armed with these instructions, we can write our next example: a string copy function like C’s
strcpy:

strcpy(dest, src);

Recall that C strings are terminated with a null (0) character.

For now, we’ll just look at the main loop of this function. Assume register$s1 holds the address
of the start of thedest string and that$s2 holds the address of the start of thesrc string.

Our task is to write a loop that copies characters (bytes) from the source string to the destination
string.

LoopTop: lb $t0, 0($s2) # temp reg = char at $s2
sb $t0, 0($s1) # char at $s1 gets temp reg
addi $s2, $s2, 1 # increment $s2
addi $s1, $s1, 1 # increment $s1
bne $t0, $zero, LoopTop # branch if we didn’t just copy a null

For another example:

char a[11];
... put something in a ...
for (i=0; i<10; i++) {

a[i+1] = a[i];
}

Assuming we will use$s0 for i and that$s1 contains the address ofa, here’s one way to write
this:

add $s0, $zero, $zero # i=0
ForLoop: slti $t1, $s0, 10 # i<10 ?

beq $t1, $zero, LoopEnd # if done, branch out
add $t2, $s0, $s1 # t2 gets address of a[i]

3

CS 220 Assembly Language & Computer Architecture Fall 2011

lb $t3, 0($t2) # t3 gets a[i]
sb $t3, 1($t2) # a[i+1] gets t3
addi $s0, $s0, 1 # i++
j ForLoop # back to check loop condition

LoopEnd:

MIPS Subroutines and Programs
You are all familiar with function/method calls in high-level languages. In assembly language, we
usually refer to these assubroutines.

The idea is the same as a function or method call – the program branches from its sequence of
instructions to execute a chunk of code elsewhere, then returns to continue where it left off.

Moreover, we expect that the values (theactual parameters) we pass to the subroutine are properly
passed to the correspondingformal parameters in the subroutine. We expect that appopriate
space is allocated for the subroutine’s local variables. And any return value from the subroutine is
returned to the caller, with the opportunity to store or use it.

As assembly language programmers, we need to manage all of that complexity.

We’ll now look at how to write and call subroutines in MIPS assembly.

Special Registers and Instructions

Recall that there are several registers reserved to help support subroutine calls:

• $a0-$a4: argument registers – a place for the caller to place values to send to the subroutine.

• $v0, $v1: return value registers – a place for subroutines to return values to the caller.

• $ra: return address register – where to resume executing the caller when the subroutine is
finished.

We also have a couple of special jump instructions:

• Jump and Link:

jal address

This instruction puts the address of the next instruction (PC+4) into register$ra, then jumps
to the address.

This is a J-format instruction, just like the standard jump instruction (j).

• Jump to Register:

4

CS 220 Assembly Language & Computer Architecture Fall 2011

jr $a

Jumps to the address specified in the given register.

This is an R-format instruction.

Assuming the subroutine hasn’t changed the$ra register, this can be used to return from
the subroutine.

Registers and the Stack

We said previously that the “s” registers$s0-$s7 are the ones assigned to variables and the “t”
registers$t0-$t9 are temporary values.

This becomes important when we start looking at subroutines. The accepted convention for register
use by subroutines:

• $t0-$t9 are always available for use by a subroutine

– if a subroutine calls another subroutine, it must assume that the called subroutine will
modify $t0-$t9.

– if this is a problem for the calling subroutine, it should save any values it has in$t0-
$t9 to memory and restore them after the subroutine call.

• $s0-$s7 should be unchanged by a subroutine call

– if a subroutine calls another subroutine, it can expect its values in$s0-$s7 to remain
upon return.

– if the called subroutine wishes to make use of$s0-$s7, it should save the caller’s
values in any of these registers it will use in memory, then restore them before return.

Since subroutines can be called by anyone, we don’t know which “s” registers, if any, are important
to the caller. So we have to save these if we use them.

So where do we save values in memory when we need to save them? On thestack.

The stack is a section of memory dedicated to saving registers to manage subroutine calls.

We have a special register$sp called thestack pointer that indicates thetop of the stack.

The stack grows and shrinks as registers are saved and restored during a program’s execution.

If we have a subroutine that will need to make use of$s0, $s1 and$s2, we need to do the
following at the start of the subroutine’s code:

addi $sp, $sp, -12 # make room for 3 4-byte values
sw $s0, 0($sp) # push s0
sw $s1, 4($sp) # push s1
sw $s2, 8($sp) # push s2

5

CS 220 Assembly Language & Computer Architecture Fall 2011

Then before returning:

lw $s2, 8($sp) # pop s2
lw $s1, 4($sp) # pop s1
lw $s0, 0($sp) # pop s0
addi $sp, $sp, 12 # restore the stack pointer

Note that we “pop” in the opposite order as we “push”.

A First Complete Subroutine

Let’s return to our string copy code:

LoopTop: lb $t0, 0($s2) # temp reg = char at $s2
sb $t0, 0($s1) # char at $s1 gets temp reg
addi $s2, $s2, 1 # increment $s2
addi $s1, $s1, 1 # increment $s1
bne $t0, $zero, LoopTop # branch if we didn’t just copy a null

In order to make this a subroutine, we need to get values from the subroutine argument registers
and save and restore values of any “s” registers we decide to use. Our code becomes:

strcpy: addi $sp, $sp, -8 # make space for 2 words on the stack
sw $s2, 4($sp) # save s2
sw $s1, 0($sp) # save s1
add $s1, $a0, $zero # copy arg0 into s1
add $s2, $a1, $zero # copy arg1 into s2

LoopTop: lb $t0, 0($s2) # temp reg = char at $s2
sb $t0, 0($s1) # char at $s1 gets temp reg
addi $s2, $s2, 1 # increment $s2
addi $s1, $s1, 1 # increment $s1
bne $t0, $zero, LoopTop # branch if we didn’t just copy a null

lw $s1, 0($sp) # restore s1
lw $s2, 4($sp) # restore s2
addi $sp, $sp, 8 # restore sp
jr $ra # return from subroutine

Note that we could so something simpler here: save and restore $a0 and$a1 and use those in
place of$s1 and$s2 throughout.

A Recursive Example

We will develop a MIPS assembly subroutine to implement the following C function:

6

CS 220 Assembly Language & Computer Architecture Fall 2011

int factorial (int x) {
if (x<1) return 1;
return x * factorial(x-1);

Since this subroutine calls another subroutine (itself) weneed to save$ra and any temp registers
we care about before making the recursive call.

We will assume a subroutinemultiply exists and we will use that to do our multiplication to get
extra practice with subroutines.

Here is some code for this:

factorial:
make space for 2 words on the stack
addi $sp, $sp, -8

save $ra and $a0 on the stack
sw $a0, 4($sp)
sw $ra, 0($sp)

slti $t0, $a0, 1 # is x < 1?
beq $t0, $zero, L1 # if no, skip over if part

x >= 1, just return 1
addi $v0, $zero, 1 # return value is 1

we could restore $a0 and $ra but we know they haven’t
changed when we take this quick exit, so let’s not
but we still need to put $sp back the way we found it
addi $sp, $sp, 8
jr $ra # return to caller

here, x>=1 so we need to make a recursive call
L1: addi $a0, $a0, -1 # get x-1 for the parameter

jal factorial # recursive call, will put answer in $v0

We now want to set up for the multiply, but we destroyed $a0
above, but have it on the stack, so let’s load it
lw $a0, 4($sp)
add $a1, $v0, $zero # put factorial(x-1) result into $a1
jal multiply # multiply $a0*$a1, put result in $v0

$v0 is where we want our answer, so no work there
but multiply could have changed $a0 and did change $ra
lw $ra, 0($sp) # restore $ra

7

CS 220 Assembly Language & Computer Architecture Fall 2011

lw $a0, 4($sp) # restore $a0
addi $sp, $sp, 8 # restore $sp
jr $ra # return to caller

Trace through this with the callfactorial(3).

Another example: arraycmp

Advanced Stack Management
MIPS makes life easy for many subroutines: if the parameterscan be passed in thea registers, the
return value provided in thev registers, and all local variables can be stored ins andt registers,
little management of the call stack is needed.

Yes, we need to save registers when we need to use somes registers or make a subroutine call.
But with other ISAs and with more complex subroutines even in MIPS, there is more to it.

For more than 4 parameters, or for parameters that do not fit ina 32-bit register:

• the caller is responsible for pushing those parameters ontothe stack before calling the sub-
routine,

• the subroutine (the “callee”) will find those parameters in the proper location on the stack,
and

• the caller will pop the parameters from the stack upon return.

If we have more local variables than fit in registers, or if some of our local variables are structures or
arrays, space may also be allocated on the stack to hold thesevalues. The subroutine is responsible
for management of the stack to make space for these local variables and to restore the stack to its
original state when finished.

The section of the stack used for a procedures parameters, local variables, and saved registers is
called theprocedure frame, or call frame or activation record of the procedure.

8

