
Computer Science 220
Assembly Language & Comp. Architecture
Siena College
Fall 2010

Topic Notes: ISA Comparisons

With our discussion of the MIPS ISA now nearly complete, it istime to take a brief look at other
ISAs and their characteristics.

We will consider the assembly language code generated from afew simple C programs for some
of the ISAs we consider:

See Example:
˜jteresco/shared/cs220/examples/assembly

RISC vs. CISC
We have used the terms RISC and CISC in passing, but now is a good time to say a bit more about
them.

We will see how to implement the MIPS ISA directly in hardware, including complexities like data
forwarding and hazard detection.

This is possible in an undergraduate course because of the simplicity of its design. MIPS includes
a very limited number of instructions, all instructions arethe same size, and there are very few
addressing modes.

These are some of the features common toReduced Instruction Set Computer (RISC) architectures,
of which MIPS is an excellent example.

Many other architectures are too complex to be implemented directly in hardware. In these cases,
an implementation might involve a simpler hardware (amicroarchitecture) and aninterpreter is
used to execute instructions, guided by amicroprogram.

Decoding and executing an instruction can require several steps, and the more complex the instruc-
tion (more operands, etc) the longer it will take.

These architectures are classified asCISC or Complex Instruction Set Computer.

Some characteristics of CISC architectures:

• CISC architectures have large instruction sets: many operations are supported as single ma-
chine instructions

• Individual CISC instructions may be very complex

– theCMPC3andCMPC5string comparison instructions from VAX MACRO.

CMPC5 R5,STRING1,#ˆA/ /,R7,STRING2
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This compares the character string whose starting address is specified bySTRING1
and whose length is in registerR5 to the stringSTRING2, lengthR7, using the space
character to pad the shorter string for comparison purposes, using registersR0, R1, R2
andR3 to store information about the result of the comparison.

– Motorola 68000movem.l instruction, that moves a specified subset of the 16 user-
visible registers onto the call stack in a single instruction.

swap: link %a6,#0
movem.l #0x010f,-(%sp)
...
movem.l (%sp)+,#0xf080
unlk %a6
rts

∗ Order for pushing:a7..a0,d7..d0 , so the above results ina0 andd3..d0
being pushed onto the stack – 5 memory writes and a register modification!

∗ Order for popping:d0..d7,a0..a7 – same registers but this time 5 memory
reads above.

The code above would replace the longer code:

a = 8
i = 12
j = 14
swap: link %a6,#0

move.l %d0,-(%sp)
move.l %d1,-(%sp)
move.l %d2,-(%sp)
move.l %d3,-(%sp)
move.l %a0,-(%sp)
....code for swap from before...
move.l (%sp)+,%a0
move.l (%sp)+,%d3
move.l (%sp)+,%d2
move.l (%sp)+,%d1
move.l (%sp)+,%d0
unlk %a6
rts

– Another example from the VAX-11: theSOBGTRinstruction – “Subtract One and
Branch on GreaTeR than” – subtract 1 from the specified register and branch to the
target address if the result is greater than 0. So an entire loop could be written:

MOVAW DATA,R6 ; load array ptr into R6
MOVL NUM,R9 ; initialize R9 with the number of elts

DOUBLE: ADDW2 (R6),(R6)+ ; double entry, increment ptr
SOBGTR R9,DOUBLE ; loop control
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• CISC instructions support a large variety of addressing modes. The 68000 has about a dozen
operand modes, e.g.,

– register direct

– immediate

– register indirect (pointers)

(%a3)

– register indirect with offset (structures)

4(%a6)

– register indirect with displacement and indexing (arrays)

4(%a4,%d1.w)

– address register indirect with predecrement

-(%a7)

– address register indirect with postincrement

(%a7)+

These can be used with nearly any instruction!

• CISC instructions often allow memory-based data for one or more operands in most instruc-
tions, so a single instruction may make several (slow) memory accesses.

• CISC instructions can vary in length, where the length often varies according to the address-
ing mode (extension words on 68000).

– larger constant/offset values allowed – just in the next memory location.

• CISC implementations are often microcoded.

• CISC implementations are heavily pipelined.

• CISC systems usually offer a relatively small numbers of user-visible registers (a dozen or
two).

• CISC results in a relatively compact code footprint (each instruction accomplishes a lot).

• If you have to program directly in assembly language, CISC isn’t too bad. Compilers may
make use of only a subset of available instructions (for optimizations or portability of code
generation).

Researchers (many at Stanford) in the 1980’s advocated for the RISC approach.

Characteristics of RISC architectures:

• Most RISC instructions can be executed in one “cycle”.
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– SPARC supports a single step of multiply, not a full multiply in one instruction. (keep
the common case fast!)

• RISC instruction sets may be large, but are easily decoded.

– small number of opcodes: MIPS has 14 arithmetic, 4 load/store, 4 (×14) conditionals,
4 misc, 3 multiple cyclemacro instructions.

• RISC instructions support a small number of addressing modes.

• RISC memory access is only through explicit operations:LOADandSTORE.

• RISC instructions are fixed-length (no extension words) withsimple instruction formats:
3-operand operations, memory reference, conditional branch, jumps.

• RISC architectures are simple enough for hardware-based decoding, but there is likely some
microcoding done.

• RISC instructions are pipelined, but pipes are shorter.

– typical pipeline: instruction fetch, instruction decode,operand decode, execution, data
write

• RISC architectures offer larger numbers of registers, frequently supplanting the use of stack
(maybe thousands).

• Programs in a RISC assembly are longer, so have a relatively large code footprint.

• RISC is harder to program by hand – easier for a compiler.

Sun Sparc
Sun Microsystems’ Sparc architectures enjoyed a long period of success from the early 1990’s to
the early 2000’s.

Sparc is a RISC architecture, and contains many of the same features as MIPS.

Register Windows

A RISC system may have hundreds of registers in its register file.

One way to organize these registers is to treat the register file as circular and give each routine a
“view” of a limited subset of these registers at any given time.

Sparc has many, many registers but only 32 visible at any given time.

One subset of registers is designated as “globals” and are visible to all routines.

Then, each routine has three subsets of registers
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• “ins” – the actual parameters

• “locals” – local variables, temporaries

• “outs” – parameters to any subroutines called by this routine

The “outs” of a routine become the “ins” of a subroutine that it calls.

Think about how this works. Much of what we could do with the stack for parameter passing and
local variable storage can be replaced with this.

We eliminate some of the problems of registers getting clobbered by subroutines and we speed
function calls by reducing memory accesses needed to pass parameters on the stack.

But what if we have a deep call stack and we run out of registers?We can’t just clobber things, so
we’d need to keep a stack also for those cases.

The actual implementation involves “pretending” to write things to the stack, but it only actually
does this (“spill” to the stack, and “fill” from the stack to restore) if necessary given the current
state of the register file.

Another problem: what about functions with more parametersthan can be passed in the register
window?

Observation: a compiler for a system using register windowswould do well to eliminate recursion
when possible.

Other Sparc Features

Some other things of note about Sparc:

• register names: ins, outs, globals, locals

• load/store as in MIPS (different syntax, same effect)

• compare and branch in separate instructions – the conditional branches look at the status
codes set by a previous instruction

• 1 cycle branch delay slot – note thenops in the assembly code

x86/IA-32 ISA
The text also describes in Section 2.17, some details of the Intel x86/IA-32 instruction set architec-
ture. Now that you know something about the MIPS ISA and its simplicity, that section will make
for interesting reading.

Some highlights:

A Brief History of the x86

5



CS 220 Assembly Language & Computer Architecture Fall 2010

• 1978: The Intel 8086 is announced (16 bit architecture)

• 1980: The 8087 floating point coprocessor is added

• 1982: The 80286 increases address space to 24 bits, +instructions

• 1985: The 80386 extends to 32 bits, new addressing modes

• 1989-1995: The 80486, Pentium, Pentium Pro add a few instructions (mostly designed for
higher performance)

• 1997: 57 new “MMX” instructions are added, Pentium II

• 1999: The Pentium III added another 70 instructions (SSE)

• 2001: Another 144 instructions (SSE2)

• 2003: AMD extends the architecture to increase address space to 64 bits, widens all registers
to 64 bits and other changes (AMD64)

• 2004: Intel capitulates and embraces AMD64 (calls it EM64T)and adds more media exten-
sions

• 2006: SSE4: 54 new instructions from Intel

• 2007: SSE5: 170 new instructions from AMD

• 2008: Advanced Vector Extension from Intel to expand SSE register width to 256 (from
128), redefining 250 instructions, adding 128 new

x86/IA-32 Overview

• Complexity:

– Instructions from 1 to 17 bytes long

– one operand must act as both a source and destination

– one operand can come from memory

– complex addressing modes e.g., “base or scaled index with 8 or 32 bit displacement”

• Saving grace:

– the most frequently used instructions are not too difficult to build

– compilers avoid the portions of the architecture that are slow

– much of the complexity comes from backwards compatibility and may safely be ig-
nored by modern programmers/compilers
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• 8 general purpose registers plus 8 special purpose

• Lots of restrictions and caveats

Quotes about the x86/IA-32

• “This history illustrates the impact of the ‘golden handcuffs’ of compatibility”

• “adding new features as someone might add clothing to a packed bag”

• “an architecture that is difficult to explain and impossibleto love”

• “what the 80x86 lacks in style is made up in quantity, making it beautiful from the right
perspective”

x86 Basics: Registers, Data Types, and Memory

A diagram of the main registers can be found in Figure 2.36.

• modern x86/IA-32 has 8 32-bit integer registers

– not entirely general-purpose: some instructions limit thechoice of register operands to
fewer than 8

• special-purpose 32-bit registers:

– instruction pointer (program counter)

– flags (condition codes)

– floating-point and multimedia registers

• Registers names come from their historical special purposes:

%eax accumulator (for arithmetic ops)
%ebx base (address of array in memory)
%ecx count (of loop iterations)
%edx data (e.g., second operand for binary operations)
%esi source index (for string copy or array access)
%edi destination index (for string copy or array access)
%ebp base pointer (base of current stack frame)
%esp stack pointer (top of stack)
%eip instruction pointer (program counter)
%eflags flags (condition codes and other things)

• The letter “E” in the name indicates that the “extended” (32-bit) version.
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• Registers can also be used to store 16- and 8-bit values

– useful when writing smaller values to memory

– the low 16 bits of a register are denoted by dropping the “E” from the register name,
e.g.,%si

– the two 8-bit halves of the low 16 bits of the first four registers can be used as 8-bit
registers by replacing “X” with “H” (high) or “L” (low)

• Many instructions are independent of data type, but some require that you select the proper
instruction for the data types of the operands

• Memory: many x86 operations accept memory locations as operands

– e.g., increment value in memory in one instruction (equivalent of lw , addi , sw in
MIPS)

– Figure 2.37 shows the valid combination (both from memory isnot allowed).

x86 ISA

• Arithmetic operations:ADD, SUB, NEG(negate),INC (increment),DEC(decrement)

• Logical operations:AND, OR, XOR, NOT

• Shift operations:SHL (left), SAR(arithmetic right),SHR(logical right)

• Rotate operations (shift with wraparound): to the left (ROL) or to the right (ROR)

• typically specify one register as both the destination and one of the sources:

addl %eax,%ebx # EBX <= EBX + EAX

– we cannot use a singleADDinstruction to put the sum ofEAXandEBXinto ECX

– instruction name is extended with a label for the type of data, an “L” in the case above
to indicate long, or 32-bit, operands (others are “W” for 16-bit (word) and “B” for 8-bit
(byte) operands)

– note destination appears last (though this is assembler-specific)

• immediate values of up to 32-bits are usually allowed (sincewe can have longer instructions),
and values that fit into fewer bits are encoded as shorter instructions

• Immediate values are preceded with a dollar sign:

addl $20,%esp # ESP <= ESP + 20
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Beware: removing the dollar sign

addl 20,%esp # ESP <= ESP + M[20]

which specifies the contents of memory location 20 to be addedto ESPrather than the value
20

• A few more examples:

movl $10,%esi # ESI <= 10
movl %eax,%ecx # ECX <= EAX
xorl %edx,%edx # EDX <= 0

• Data movement: theMOVinstruction takes the place of both load and store

• Most x86 addressing modes are specific cases of the general mode:

displacement(SR1,SR2,scale)

which multipliesSR2by scale , then adds bothSR1anddisplacement .

This complex addressing supports array accesses generatedby high-level programs.

For example, to access thei
th element of an array of 32-bit integers, one could put a pointer

to the base of the array intoEBXand the indexi into ESI , and execute

movw (%ebx,%esi,4),%eax # EAX <= M[EBX + ESI * 4]

If the array started at the28
th byte of a structure, andEBX instead held a pointer to the

structure, one could still use this form by adding a displacement:

movw 28(%ebx,%esi,4),%eax # EAX <= M[EBX + ESI * 4 + 28]

scale can be 1, 2, 4, or 8, defaults to 1.

• Examples of simpler cases of this addressing mode:

movb (%ebp),%al # AL <= M[EBP]
movb -4(%esp),%al # AL <= M[ESP - 4]
movb (%ebx,%edx),%al # AL <= M[EBX + EDX]
movb 13(%ecx,%ebp),%al # AL <= M[ECX + EBP + 13]
movb (,%ecx,4),%al # AL <= M[ECX * 4]
movb -6(,%edx,2),%al # AL <= M[EDX * 2 - 6]
movb (%esi,%eax,2),%al # AL <= M[ESI + EAX * 2]
movb 24(%eax,%esi,8),%al # AL <= M[EAX + ESI * 8 + 24]
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Figure 2.38 also shows addressing modes with MIPS equivalents.

• direct addressing mode: the address to be used is specified asan immediate value in the
instruction

movb 100,%al # AL <= M[100]
movb label,%al # AL <= M[label]
movb label+10,%al # AL <= M[label+10]
movb 10(label),%al # NOT LEGAL!
movb label(%eax),%al # AL <= M[EAX + label]
movb 13+8* 8-35+label(%edx),%al # AL <= M[EDX + label + 42]
movw $label,%eax # EAX <= label
movw $label+10,%eax # EAX <= label+10
movw $label(%eax),%eax # NOT LEGAL!

• Condition codes: there are many, but we will look at 5 condition codes

– sign flag (SF): was last result negative

– zero flag (ZF): was last result 0

– carry flag (CF): did last result generate a carry (among other uses)

– overflow flag (OF): did last operation overflow

– parity flag (PF): even parity of last operation

Note: most, but not all instructions affect all flags

• Conditional branches: 8 basic branch conditions and their inverses are available plus the
unconditional branchJMP

– jo : overflow –OFis set

– jp : parity –PF is set (even parity)

– js : sign –SF is set (negative)

– je : equal –ZF is set

– jb : below –CF is set

– jbe : below or equal –CFor ZF is set

– jl : less –SF != OF

– jle : less or equal – (SF != OF) or ZF is set

All except can be inverted by inserting an “N” after the initial “J”: JNB jumps if the carry
flag is clear.

• Subroutine control: theCALL andRETinstructions

CALL pushesEIP , and its target can come from one of many addressing modes:
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call printf # (push EIP), EIP <= printf
call * %eax # (push EIP), EIP <= EAX
call * (%eax) # (push EIP), EIP <= M[EAX]
call * fptr # (push EIP), EIP <= M[fptr]
call * 10(%eax,%edx,2) # (push EIP), EIP <= M[EAX + EDX * 2 + 10]

RET(return) pops the return address off the stack and intoEIP

• Some typical instruction formats are shown in Figure 2.41.

x86 Wrapup

Just how complex is the x86 ISA today?

See Figure 2.43 for a summary.
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