Computer Science 220

Assembly Language & Comp. Architecture
SIENAcollege siena College

Computer Science Fall 2010

Topic Notes: Data Paths and Control

We have spent time looking at the MIPS instruction set agchitre and building up components
from digital logic primitives. Our next goal is to see how wanause the physical devices we have
studied to construct the hardware that can execute MIP&igtgins.

A MIPS Subset Implementation

To keep things manageable, we will consider a subset of ké3@vihstructions.

1. memory access$:w, sw
2. arithmetic/logicaladd, sub, and, or, sl t

3. control flow:beq, j

The same ideas and techniques that we will use to implemisritdisic subset can be used to build
a machine to implement the entire MIPS ISA, and in fact, mastenn ISAs.

Let’s think about what needs to be done to implement thesrictgns.

First, recall the loop that our machine will execute:

. Fetch the instruction from memory at the location indedaby the program counter

. Update the program counter to point to the next instradibdbe executed

1
2
3. Decode the instruction
4. Execute the instruction
5

. Goto1l

The first two steps are done the same way, regardless of ttradtisn we'’re going to execute.
During the decode and execution steps, the implementaéioorbes instruction-specific.

At that point, the instruction may result in a register valh@ng written into memory, a register
value being read from memory, two registers being set agsrpuhe ALU and the ALU result
written back to another register, or the PC possibly modifig@ conditional branch or uncondi-
tional jump.

We'll follow the basic implementation in P&H Chapter 4. Werstaith an abstract view and fill
in the details.

CS 220 Assembly Language & Computer Architecture Fall 2010

The first view is in Figure 4.1.

Let's understand what's in this diagram:

e Functional units:

— Separate instruction and data memories: this allows thructson to be fetched and a
data value to be read or written from memory in the same iostmi cycle

— Register file: the 32 32-bit registers we saw earlier in theesten
— Program counter (PC) register
— Main ALU

— Two additional adders, one that always adds 4 to the PC (fenw¥e are simply going
to advance to the next instruction), and another that coesgutanch targets

e Data paths:

— PC gets passed to the instruction memory and to the +4 adder

— The fetched instruction is decoded and appropriate bitssan¢ to the input of the
second branch target adder (when PC offsets are part ofdtredtion), to the register
file to determine which registers are to be used by the instru¢needed by nearly all
instructions) and directly as an ALU input (for immediatedemperands)

— The result of the PC adders is sent back to update the PC
— Register file outputs are fed into the ALU and into the data nigmo

— Main ALU outputs can determine the address for a main memoegss or can be fed
back to the register file for storage

— Avalue read from the data memory may also be passed back torled & the register
file

This view is too simplistic for several reasons. In our firstimement of the original abstract
diagram, we add some multiplexers and control lines.

This refinement is shown in P&H in Figure 4.2.

What have we added in this refinement?

e Multiplexors replace the “wired or” points in the diagramhese places that two possible
inputs come together

— The MUX at the top selects which value is used to update the PC

— The MUX whose output goes to the data input of the registersilects between an
ALU result and a value read from memory

— The MUX whose output goes to the main ALU input selects betwaesecond register
to the ALU and an immediate value taken from a bit field of thetrimction

2

CS 220 Assembly Language & Computer Architecture Fall 2010

e Control lines to determine the operation of the individuahponents

— The control structure is guided mainly by the instructioente the new communication
path from the instruction to théont r ol oval

— ThatCont r ol decodes the instruction and determines which of our funationits
are involved in this instruction and what operations thegdthi® perform

— If the instruction involves storing a value in a registee RegW i t e line is set and
the value sent to the “Data” input of the register file is stiarethe destination register

— If the instruction id w, theMenRead line is set, causing the data memory to retrieve
the value at the address computed by the ALU and sends it tdataeinput of the
register file (which also requires that the MUX selects thenmy output to be passed
to that input)

— If the instruction issw, theMemN i t e line is set, causing the value retrieved by the
source register to be written to the memory location as detsd by the output of the
main ALU

— The main ALU is always computing something, and in those casat its result is
important, a set of control lines tell the ALU which of its fttions to compute

— Finally, if it is a branch instruction, th8r anch line is set. If the main ALU also
produced a zero result (which would cause the ALU to setZaéeo line), the PC
MUX selects the value from the branch target ALU instead eft# ALU to be passed
to the PC

Building these Components

Our design consists of

1. combinational units — ALUs
2. state elements — memories and registers

3. data signals — information that is stored in memory, tegss or used as inputs and outputs
of ALUs

4. control signals — information that controls what the combonal units are to compute,
which values should be passed through by the multiplexodyaen state elements should
assert their values as data signals (drive the bus) or uglieitevalues based on input data
signals

All of our components need to be synchronized properly taienghat inputs and outputs are
available at appropriate times.

For example, we have seen flip-flops (and registers built ttayae flip-flops) that load new values
only on the leading edge of the clock. In those cases, we reedake sure that the input is

3

CS 220 Assembly Language & Computer Architecture Fall 2010

presented and control lines set appropriately when thekdloat controls those flip-flops goes
high.

This is sometimes easy — value is ready and available wheree# . Other times, the timing
is more subtle. Since combinational units al&ays computing, we need to make sure the input

values are presented and the control lines remain cormegenough for the output to be computed
and captured.

We consider subsets of the design proposed earlier.

First, the PC and instuction memory.

e Memory is usually thought of as a state element, but theungtm memory is never mod-
ified by our simple data path, so it is always producing thé&iresion value at the location
specified on the instruction address (Of course, the prognasmo get there somehow, so
there must be a write capability but we will not consider itfiow)

e The PC is just a single register. It can always be writing #lsig to the instruction address
input, and should read a new value at the end of the instruettecute cycle, once we have
computed the new PC value

e The adders are combinational units along the lines of th@seonstructed. One is hardwired
to add 4 (and could be replaced with a simpler circuit thaipple-carry adder if we wanted
to save some gates and delay — remember your lab problem).

Next, we consider the implementation of R-format instrutsio
op $t1, $t2, $t3

This will write a value to registe$t 1 as a result of applying the specified operatiorfsor2 and
$t 3.

Thus, we need our register file to be able to produce two oulpiat values and receive one input
data value.

We also need to be able to determine which of the 32 regist¢oslie used to each operand. This
information comes directly from the bits of the instructibiat specify the two source registers(
andr t) and the destination registard).

To achieve this, we can first decode those 5-bit values usiagp3a32 decoders, calling the decoded
signalsr sg, r sy, ...rSs;, rto,rtq,...rts,rdo, rdy, ...rds.

We can then implement each regisi@as a 32-bit register:

CS 220 Assembly Language & Computer Architecture Fall 2010

Data Input bus /
/32

mn

di L
el H:_D—»CLK Register i
RegWr
// N rs bus output
= [

rsi

rt bus output

rti

That takes care of the register file.
What about the main ALU?

Appendix C on the CD with the text describes the ALU constorctiWe have seen just about
everything we need, so we will look at the book’s figures tolsae an ALU tailored to this MIPS
subset can be constructed.

Key ideas:

construct circuits to compute each needed input

multiplex the outputs based on an operation selection cblime set

AND and OR are trivial

we know how to build an adder/subtractor - this ALU works $arty

Also needs| t support: set on less than

— we can tell that < b if we find that(a — b) < 0

— however, the bit of the ALU that detects whether this valussigative is the high-order
(sign) bit, but we want to set the low-order bit in this case

— Appendix C shows special circuitry needed to accomplish thi

— all bits have a_ess input, which will be 0 on all but the low-order bit, where it is
connected to a copy of the sign bit

e And to supportbeq, we need to have an output that subtracts one of the registang
compared to the other, then checks if the result is zero

e The ALU has 4 control lines but only 6 meaningful combinasipas seen in Figure C.5.13.

— in this table, the first control line i&i nvert, which is only used for th&lOR func-
tionality

CS 220 Assembly Language & Computer Architecture Fall 2010

— the second iBnegat e, used when we want subtraction (either for $he instruction
or because we need the result of a subtractiorsfdr) or NOR (where we only care
about the “invert” part of the “negate”)

— the last two control the multiplexor that selects among taguts of the AND gate,
OR gate, full adder, dcess

Implementing Remaining Instructions in our Subset

First, the load and store instructions, which are in theridat.

lw $t0, 1200($t 1)
sw $t2, 32($t1)

In either case, we need to retrieve the vahiel from the register file, and add to that the offset,
which is part of the instruction itself. We’ll use the main Blfor this. The value computed is the
effective address for the memory access.

We can't just take the 16 bits from the instruction and addréatly to the contents of the base
register. The offset may be negative, so we will need a sigansion unit that will copy the
contents of the high order bit of the offset into all highasbgiving us the 32-bit equivalent.

For al winstruction, we instruct the memory to retrieve the valuéhateffective address, and it
will be stored back in the register file at the destination.

For asw instruction, we need to take the value in the source registen the register file, and
present it as input to the memory and tell the memory to write.

This gives the data path shown in Figure 4.10 of P&H (whiclorgs branch and jump instruc-
tions).

For thebeq instruction, we also need to sign extend the offset valueth®n shift it left by 2
before feeding it to the branch target adder. The left sgif2 laccounts for the fact that the branch
offset is a number of words, not bytes, that must be addecetB@4 value to obtain the branch
target location.

Other than that, we need to send the two register values #ltbleto see if they are equal (which
we accomplish by testing if the difference produces a 0 tesul

The data path for this part is shown in Figure 4.9 of P&H.
If we put together everything we have seen so far, we get tteepieh of Figure 4.11 of P&H.

This handles all of our instructions excgpt

Adding Control
Now we want to add the details of the control to the data path.

First, we consider the ALU. We saw that it has 4 control lindhen do we want to set these lines?

6

CS 220 Assembly Language & Computer Architecture Fall 2010

This process is a familiar one for us: based on the instmaijocode field and (if the opcode
indicates an R-format instruction), tlieinct field, we can compute 4 expressions (and hence
circuits) that set the ALU control lines appropriately.

Figures 4.12 and 4.13 in P&H show some details of this, but Wlenat worry about those details
at this point.

Next, we consider how the fields of the instruction are usedotustruct the rest of the needed
control signals.

A refinement is shown in Figure 4.15 of P&H.

e Our instruction memory produces the 32-bit instructionavor

e Bits 15-0 (theaddr ess field for an I-format instruction) are sent to the sign extensnit
to be used as potential input values by the ALU.

e Bits 5-0 (thef unct field for an R-format instruction) are sent to the ALU contmtbmpute
the appropriate ALU control lines.

e Bits 25-21 (the source registes) are sent to the register file to select read register 1.
e Bits 20-16 (the source registet) are sent to the register file to select read register 2.

e The write register is more complex. How, we use the t field in bits 20-16. For R-format
instructions, we use thed field in bits 15-11. An additional multiplexor and a contrivid
RegDst control which field is passed to the write register selecitnqut.

e The other control lines are computed from thgcode in bits 31-26, as shown in Figure
4.17 of P&H. The details of the conversion of thpcode are just combinational logic,
which again, we can figure out (or look up in the text).

P&H has a series of figures (4.19, 4.20, and 4.21) that showdaml type of instruction uses this
data path.

Adding Jump

The final refinement is to add the data path and control to imefe the instruction, as seen in
Figure 4.24.

Using Multiple Cycles to Implement Instructions

The design we've been studying is a “single-cycle” impletaan — meaning that one clock cycle
results in one instruction being executed.

This is not used in real life, mainly because of the inefficien

e Every instruction takes the same amount of time — we don’terth& common case fast

7

CS 220 Assembly Language & Computer Architecture Fall 2010

¢ We have redundant elements: the two memory systems, neuipU/adder units

If we break our instructions down to operate over a serieslobrter) clock cycles, we can use
only the number of cycles we need and potentially reuse samganents.

There are a number of ways to do this — we will consider a comappmoach called pipelining.

