
Computer Science 220
Assembly Language & Comp. Architecture
Siena College
Fall 2010

Topic Notes: Data Paths and Control

We have spent time looking at the MIPS instruction set architecture and building up components
from digital logic primitives. Our next goal is to see how we can use the physical devices we have
studied to construct the hardware that can execute MIPS instructions.

A MIPS Subset Implementation
To keep things manageable, we will consider a subset of key MIPS instructions.

1. memory access:lw, sw

2. arithmetic/logical:add, sub, and, or, slt

3. control flow:beq, j

The same ideas and techniques that we will use to implement this basic subset can be used to build
a machine to implement the entire MIPS ISA, and in fact, most modern ISAs.

Let’s think about what needs to be done to implement these instructions.

First, recall the loop that our machine will execute:

1. Fetch the instruction from memory at the location indicated by the program counter

2. Update the program counter to point to the next instruction to be executed

3. Decode the instruction

4. Execute the instruction

5. Go to 1

The first two steps are done the same way, regardless of the instruction we’re going to execute.
During the decode and execution steps, the implementation becomes instruction-specific.

At that point, the instruction may result in a register valuebeing written into memory, a register
value being read from memory, two registers being set as inputs to the ALU and the ALU result
written back to another register, or the PC possibly modifiedby a conditional branch or uncondi-
tional jump.

We’ll follow the basic implementation in P&H Chapter 4. We start with an abstract view and fill
in the details.

CS 220 Assembly Language & Computer Architecture Fall 2010

The first view is in Figure 4.1.

Let’s understand what’s in this diagram:

• Functional units:

– Separate instruction and data memories: this allows the instruction to be fetched and a
data value to be read or written from memory in the same instruction cycle

– Register file: the 32 32-bit registers we saw earlier in the semester

– Program counter (PC) register

– Main ALU

– Two additional adders, one that always adds 4 to the PC (for when we are simply going
to advance to the next instruction), and another that computes branch targets

• Data paths:

– PC gets passed to the instruction memory and to the +4 adder

– The fetched instruction is decoded and appropriate bits aresent to the input of the
second branch target adder (when PC offsets are part of the instruction), to the register
file to determine which registers are to be used by the instruction (needed by nearly all
instructions) and directly as an ALU input (for immediate mode operands)

– The result of the PC adders is sent back to update the PC

– Register file outputs are fed into the ALU and into the data memory

– Main ALU outputs can determine the address for a main memory access or can be fed
back to the register file for storage

– A value read from the data memory may also be passed back to be stored in the register
file

This view is too simplistic for several reasons. In our first refinement of the original abstract
diagram, we add some multiplexers and control lines.

This refinement is shown in P&H in Figure 4.2.

What have we added in this refinement?

• Multiplexors replace the “wired or” points in the diagram – those places that two possible
inputs come together

– The MUX at the top selects which value is used to update the PC

– The MUX whose output goes to the data input of the register fileselects between an
ALU result and a value read from memory

– The MUX whose output goes to the main ALU input selects between a second register
to the ALU and an immediate value taken from a bit field of the instruction

2

CS 220 Assembly Language & Computer Architecture Fall 2010

• Control lines to determine the operation of the individual components

– The control structure is guided mainly by the instruction, hence the new communication
path from the instruction to theControl oval

– ThatControl decodes the instruction and determines which of our functional units
are involved in this instruction and what operations they need to perform

– If the instruction involves storing a value in a register, the RegWrite line is set and
the value sent to the “Data” input of the register file is stored in the destination register

– If the instruction islw, theMemRead line is set, causing the data memory to retrieve
the value at the address computed by the ALU and sends it to thedata input of the
register file (which also requires that the MUX selects the memory output to be passed
to that input)

– If the instruction issw, theMemWrite line is set, causing the value retrieved by the
source register to be written to the memory location as determined by the output of the
main ALU

– The main ALU is always computing something, and in those cases that its result is
important, a set of control lines tell the ALU which of its functions to compute

– Finally, if it is a branch instruction, theBranch line is set. If the main ALU also
produced a zero result (which would cause the ALU to set theZero line), the PC
MUX selects the value from the branch target ALU instead of the +4 ALU to be passed
to the PC

Building these Components

Our design consists of

1. combinational units – ALUs

2. state elements – memories and registers

3. data signals – information that is stored in memory, registers, or used as inputs and outputs
of ALUs

4. control signals – information that controls what the combinational units are to compute,
which values should be passed through by the multiplexors, and when state elements should
assert their values as data signals (drive the bus) or updatetheir values based on input data
signals

All of our components need to be synchronized properly to ensure that inputs and outputs are
available at appropriate times.

For example, we have seen flip-flops (and registers built fromthose flip-flops) that load new values
only on the leading edge of the clock. In those cases, we need to make sure that the input is

3

CS 220 Assembly Language & Computer Architecture Fall 2010

presented and control lines set appropriately when the clock that controls those flip-flops goes
high.

This is sometimes easy – value is ready and available when we need it. Other times, the timing
is more subtle. Since combinational units arealways computing, we need to make sure the input
values are presented and the control lines remain correct long enough for the output to be computed
and captured.

We consider subsets of the design proposed earlier.

First, the PC and instuction memory.

• Memory is usually thought of as a state element, but the instruction memory is never mod-
ified by our simple data path, so it is always producing the instruction value at the location
specified on the instruction address (Of course, the programhas to get there somehow, so
there must be a write capability but we will not consider it for now)

• The PC is just a single register. It can always be writing its value to the instruction address
input, and should read a new value at the end of the instruction execute cycle, once we have
computed the new PC value

• The adders are combinational units along the lines of those we constructed. One is hardwired
to add 4 (and could be replaced with a simpler circuit than a ripple-carry adder if we wanted
to save some gates and delay – remember your lab problem).

Next, we consider the implementation of R-format instructions:

op $t1, $t2, $t3

This will write a value to register$t1 as a result of applying the specified operation on$t2 and
$t3.

Thus, we need our register file to be able to produce two outputdata values and receive one input
data value.

We also need to be able to determine which of the 32 registers is to be used to each operand. This
information comes directly from the bits of the instructionthat specify the two source registers (rs
andrt) and the destination register (rd).

To achieve this, we can first decode those 5-bit values using 35-to-32 decoders, calling the decoded
signalsrs0, rs1, ... rs31, rt0, rt1, ... rt31, rd0, rd1, ... rd31.

We can then implement each registeri as a 32-bit register:

4

CS 220 Assembly Language & Computer Architecture Fall 2010

32

Register i
D

Q
CLK

RegWrite

Data Input bus

rdi

rs bus output

rt bus output

rsi

rti

32

That takes care of the register file.

What about the main ALU?

Appendix C on the CD with the text describes the ALU construction. We have seen just about
everything we need, so we will look at the book’s figures to seehow an ALU tailored to this MIPS
subset can be constructed.

Key ideas:

• construct circuits to compute each needed input

• multiplex the outputs based on an operation selection control line set

• AND and OR are trivial

• we know how to build an adder/subtractor - this ALU works similarly

• Also needslt support: set on less than

– we can tell thata < b if we find that(a − b) < 0

– however, the bit of the ALU that detects whether this value isnegative is the high-order
(sign) bit, but we want to set the low-order bit in this case

– Appendix C shows special circuitry needed to accomplish this

– all bits have aLess input, which will be 0 on all but the low-order bit, where it is
connected to a copy of the sign bit

• And to supportbeq, we need to have an output that subtracts one of the registersbeing
compared to the other, then checks if the result is zero

• The ALU has 4 control lines but only 6 meaningful combinations, as seen in Figure C.5.13.

– in this table, the first control line isAinvert, which is only used for theNOR func-
tionality

5

CS 220 Assembly Language & Computer Architecture Fall 2010

– the second isBnegate, used when we want subtraction (either for thesub instruction
or because we need the result of a subtraction forslt) or NOR (where we only care
about the “invert” part of the “negate”)

– the last two control the multiplexor that selects among the outputs of the AND gate,
OR gate, full adder, orLess

Implementing Remaining Instructions in our Subset

First, the load and store instructions, which are in the I-format.

lw $t0, 1200($t1)
sw $t2, 32($t1)

In either case, we need to retrieve the value$t1 from the register file, and add to that the offset,
which is part of the instruction itself. We’ll use the main ALU for this. The value computed is the
effective address for the memory access.

We can’t just take the 16 bits from the instruction and add it directly to the contents of the base
register. The offset may be negative, so we will need a sign extension unit that will copy the
contents of the high order bit of the offset into all higher bits, giving us the 32-bit equivalent.

For alw instruction, we instruct the memory to retrieve the value atthe effective address, and it
will be stored back in the register file at the destination.

For asw instruction, we need to take the value in the source registerfrom the register file, and
present it as input to the memory and tell the memory to write.

This gives the data path shown in Figure 4.10 of P&H (which ignores branch and jump instruc-
tions).

For thebeq instruction, we also need to sign extend the offset value, but then shift it left by 2
before feeding it to the branch target adder. The left shift by 2 accounts for the fact that the branch
offset is a number of words, not bytes, that must be added to thePC+4 value to obtain the branch
target location.

Other than that, we need to send the two register values to theALU to see if they are equal (which
we accomplish by testing if the difference produces a 0 result).

The data path for this part is shown in Figure 4.9 of P&H.

If we put together everything we have seen so far, we get the data path of Figure 4.11 of P&H.

This handles all of our instructions exceptj.

Adding Control

Now we want to add the details of the control to the data path.

First, we consider the ALU. We saw that it has 4 control lines.When do we want to set these lines?

6

CS 220 Assembly Language & Computer Architecture Fall 2010

This process is a familiar one for us: based on the instruction opcode field and (if the opcode
indicates an R-format instruction), thefunct field, we can compute 4 expressions (and hence
circuits) that set the ALU control lines appropriately.

Figures 4.12 and 4.13 in P&H show some details of this, but we will not worry about those details
at this point.

Next, we consider how the fields of the instruction are used toconstruct the rest of the needed
control signals.

A refinement is shown in Figure 4.15 of P&H.

• Our instruction memory produces the 32-bit instruction word.

• Bits 15-0 (theaddress field for an I-format instruction) are sent to the sign extension unit
to be used as potential input values by the ALU.

• Bits 5-0 (thefunct field for an R-format instruction) are sent to the ALU control to compute
the appropriate ALU control lines.

• Bits 25-21 (the source registerrs) are sent to the register file to select read register 1.

• Bits 20-16 (the source registerrt) are sent to the register file to select read register 2.

• The write register is more complex. Forlw, we use thert field in bits 20-16. For R-format
instructions, we use therd field in bits 15-11. An additional multiplexor and a control line
RegDst control which field is passed to the write register selectioninput.

• The other control lines are computed from theopcode in bits 31-26, as shown in Figure
4.17 of P&H. The details of the conversion of theopcode are just combinational logic,
which again, we can figure out (or look up in the text).

P&H has a series of figures (4.19, 4.20, and 4.21) that show howeach type of instruction uses this
data path.

Adding Jump

The final refinement is to add the data path and control to implement thej instruction, as seen in
Figure 4.24.

Using Multiple Cycles to Implement Instructions
The design we’ve been studying is a “single-cycle” implementation – meaning that one clock cycle
results in one instruction being executed.

This is not used in real life, mainly because of the inefficiency:

• Every instruction takes the same amount of time – we don’t make the common case fast

7

CS 220 Assembly Language & Computer Architecture Fall 2010

• We have redundant elements: the two memory systems, multiple ALU/adder units

If we break our instructions down to operate over a series of (shorter) clock cycles, we can use
only the number of cycles we need and potentially reuse some components.

There are a number of ways to do this – we will consider a commonapproach called pipelining.

8

