Computer Science 211
M[] C Data Structures
——_ Mount Holyoke College
MOUNT HOLYOKE COLLEGE Fa” 2009

Topic Notes: Vectors

Arrays are a very common method to store a collection of ainitiéms.

Arrays work very well for a lot of situations, but they comehvsome very important restrictions.

e their size is specified on construction, and cannot be cltangghout constructing a new
array and copying over the contents

¢ all array indices must be managed explicitly

e if you want to insert an item at the start of or in the middle w&aray, you need to move one
or more items out of the way to make room

¢ if you remove an item from the start or the middle of an array ywou don’t want to leave a
“hole” in the middle, one or more items needs to be moved ataariill in the hole

This idea of a dynamically resizeable (extensible) array leads naturally to the idea ofector.

The built-in Java clagsava. ut i | . Vect or allows its user to build something like an array, but
it can change size dynamically.

We can add new elements or delete elements anywhere in tter.vec
What kinds of operations would we like to have on somethingliehaves like a resizeable array?

We need the functionality of a regular array:

e construction

add an item to the end

insert an item in the middle

retrieve value of an element

remove an item

Most of the operators of a vector will assume that the elemard “packed” — that is:

¢ if we add an element, it will be added to the end by default

¢ ifwe add an elementin the middle, all elements with highéssupts are moved up to make
room

CS 211 Data Structures Fall 2009

¢ if we remove an element, all elements with higher subscaptsshifted down to fill in the
space

So we already have some extra functionality that a regutayatoesn’t have.

Since the vector needs to be able to hold anything, its elesaea of typelbj ect (until we look
at generics shortly), hence our initial implementationl wéle casts when items are retrieved.

Here are the key methods we will consider in the implememnadf Vect or in structure package
(which mimics the one ipava. uti l).

public class Vector {
/1 post: constructs a vector with capacity for 10 el enents
public Vector()

/1 post: adds new elenent to end of possibly extended vector
public void add(Object obj)

/1l post: returns true iff Vector contains the val ue
publ i c bool ean cont ai ns(Obj ect el em

/1 pre: 0 <= index && index < size()
/1l post: returns the elenent stored in |ocation index
public Object get(int index)

/1 post: returns index of element equal to object, or -1.
/1l Starts at O.
public int indexO(Cbject elen)

/1l pre: 0 <= index <= size()

/1 post: inserts new value in vector with desired index
/1 nmovi ng el enents fromindex to size()-1 to right
public void add(int index, Chject obj)

/1 post: returns true iff no elenents in the vector
publ i ¢ bool ean i sEnpty()

/] post: vector is enpty
public void clear()

/1l post: renpove and return first elenment of vector equal to paraneter
/1 Move later elts back to fill space.
public Object renove(Cbject el enent)

/1l pre: 0 <= where && where < size()
/] post: indicated element is renoved, size decreases by 1
public Object renove(int where)

CS 211 Data Structures Fall 2009

/1l pre: 0 <= index && index < size()
/1 post: elenent value is changed to obj
public void set(int index, Object obj)

Vectors are generally used any time size of an array musigehdynamically.

For this initial Vect or implementation, each element stored can by of any type. lhaxe a
Vect or callednyVect and we wish to store th8t r i ng value” Hel | 0", we can write

nmyVect . add(" Hel | 0o");

ThisSt ri ng is an instance ofbj ect , so it matches the expected type for #wd method.

However, when we retrieve an an element (engVect . get (0)), the return type i€bj ect .
To be able to treat this value asar i ng (or whatever class it is an instance of), we ntypecast
(or, simply,cast) it back to the original data type:

String val = (String)myVect.get(0);

Java will check for us to make sure tBbj ect returned is actually &t r i ng and will throw an
exception (which, for our purposes, means the program vékic).

We can simplify ourSpel | s example by using &ect or to represent the spell list — see the
program inSpel | sVect or . | ava.

See Example:
/ honme/jteresco/ shared/ cs211/ exanpl es/ Spel | s

Let's consider another example that makes better usé/eta or :

See Example:
/ home/ j teresco/ shared/ cs211/ exanpl es/ Pocket Change

This is a “pocket change” container. It stores the collectibcoins in your pocket by their integer
values in cents, using ¥ect or. You can add and remove coins and get the total value of the
money in the pocket.

This illustrates one of the restrictions &ect or s (and all other general-purpose classes): We
cannot store base types in odgct or since base types are nabj ect s.

Luckily, there are builtin classes to “wrap them up"@sg ect s:
I nt eger seven = new Integer(7);

Others ardBool ean, Char act er, Doubl e, Fl oat, Long, andNunber .

We can retrieve thent equivalent of arh nt eger by callingi nt Val ue.

3

CS 211 Data Structures Fall 2009

seven. i nt Val ue();

You can find the entire list of classes and associated metihdte| ava. | ang package docu-
mentation.

Starting with JDK 1.5, the Java system will do the conversiogtween base types and their “wrap-
per” classes automatically as needed.

The term isautoboxing.
SeePocket ChangeAut obox. j ava

This addresses a repeated complaint among Java prograhaetisey were always packaging up
values and using thent Val ue() and similar functions.

Vector Implementation

How can we implement &ect or ? We can’t look at or modify the Sun implementation in
j ava. uti |, which is why we have the structure package.

Structure was developed at Williams College to go with out é&xi is now used by lots of people
who use this text.

We will look at the implementation dfect or in structure.

See Structure Source:
/ hone/ jteresco/ shared/ cs211/src/structure/ Vector.java.java

A Vect or uses an array for the internal storage of elements it contdiircould also use lists or
whatever else it would like, but an array is a good choice.

The array-basedlect or implementation has two essential fields:

protected Cbject elenentData[];
protected int el enentCount;

the array and the number of elements of array currently in use

Note that there is an important distinction between theaiziee array and the number of elements
in use by the/ect or .

We don't need to store the size of the array, since Java actage equipped with that information
in the. | engt h field.

When the Vector is about to exceed capacity, we copy its elesmeto a larger array. We need an
efficient strategy for this, which we will discuss shortly.

Some other items of note in the implementation:

e There are several constructors, but we will focus on justahr

4

CS 211 Data Structures Fall 2009

public Vector();

The parameterless constructor simply calls the singlenpater constructor with a constant
value of 10, so we will start with the single parameter cangtr.

public Vector(int initial Capacity);

This constructor creates an empgct or with an array allocated withni t i al Capaci ty
entries.

public Vector(int initial Capacity, int capacitylncr);

This does the same, but also sets the instance vagalpaci t yl ncr enent to the value
specified. We will look at the use of this value soon.

e There are twadd methods, one that adds an element at the end &féleé or and another
that adds an element at a specific position.

— both callensur eCapaci t y to make sure there is space for the new element (more
soon)

— the version that inserts at a location needs to move up amegits beyond the insertion
point to make room (up ta copy operations for an-elementVect or!)

e Ther enove method returns the item at a given index and then shifts dowrcontents
beyond that index to avoid a “hole” in the array. Again, wednap ton copy operations for
ann-elementvect or .

e Theget andset methods are very straightforward. These retrieve or madiyentry at a
given index in oulVect or .

e A variety of other useful methods are less interesting (en@ntation-wise)cont ai ns,
i ndexO ,i senpty,cl ear, andsi ze.

Managing the Internal Array Size
What if we run out of space in the array when adding new elerflients

Arrays cannot be resized in place. In either case, we neegabeca new, larger array then copy
the contents from the old array to the new one.

This is an expensive operation:copy operations for an-elementvect or .
But how much larger should we make the array?

Options:

CS 211 Data Structures Fall 2009

1. Increase the array size by 1 (or some other constant value)

2. Double (or triple, ...) the array size

Consider the first option, starting with an emptgct or and an initial capacity of 1.
Over the course aof add operations, we will peform aboaf- copy operations:

n—1

O+1+2+3+4+...+n=nx 5

With the second option (assumings power of 2 for simplicity), we have to copy

0+1+2+4+8+...+g:n—1

elements.
Copying about: elements is much less painful than copyﬁﬁg

Of course, no copies would need to be made if we just allocgtade fom elements at beginning
(a good idea, if you know ahead of time, but if you did, you might just be using an arrpy.

OurVect or s let the user decide which strategy to use.

If the Vect or is constructed with @apaci t yl ncr emrent of O (either by using a constructor
that does not specify one, or by passing 0 to that constrpeti@meter), th&ect or will double
its array’s length each time it needs to expand.

If a non-zerocapaci t yl ncr enent is specified, th&/ect or will be expanded by that (fixed)
amount each time it needs to grow.

So itis up to the user to decide which strategy would be monefigal, given the expected usage
patterns of th&/ect or .

