
Computer Science 211
Data Structures
Mount Holyoke College
Fall 2009

Topic Notes: Generics

We saw in our examples usingVectors that the items stored within ourVectors are treated as
instances ofclass Object.

This is quite convenient in that we can store whatever type ofobjects we wish, and until version
1.4 of the Java Development Kit, this was the preferred approach.

This approach does have a few disadvantages:

1. When we retrieve an item from ourVector, we need to use a cast before we can treat it as
an instance of its own specific type.

2. If we make a programming error and mistakenly place an object of one type into theVector
but then cast it to a different type upon retrieval, your program will crash with aruntime
error. Ideally, we would be able to detect such errors sooner – whenwe compile.

One approach to dealing with these disadvantages is to implement aspecialized version of our
Vector (or whatever other) data structure that holds exactly the type of items we wish, much like
we can declare arrays of any type.

To implement, for example, aVector that holdsIntegers (we could call itclass IntegerVector),
we could take theVector implementation, and instead of usingObjects as the type for our in-
ternal array and for the method parameter and return types, we would useInteger.

This would take care of both disadvantages we noted in the original Vector implementation.
Casts are no longer needed because the return type of methods such asget would beInteger.
And perhaps more importantly, if we attempted to write code that stored anything other than an
Integer (or a subclass ofInteger), the Java compiler would flag the error (acompile-time
error), which is much more convenient time to detect an error than at run time

But unfortunately, this “solution” means writing a brand newspecializedVector-like class for
each data type we need to store.

Starting with JDK 1.5 (Java 5), Java was extended to allow class definitions to includegeneric,
or parameterized data types. This means that we can write a definition of the structure using data
types that are unspecified (much like the value of a method parameter is unspecified) until we
create an instance of the class.

We can see generic versions ofAssociation andVector in use:

See Example:
/home/jteresco/shared/cs211/examples/Spells/SpellsVectorT.java See Ex-
ample:
/home/jteresco/shared/cs211/examples/PocketChange/PocketChangeT.java:



CS 211 Data Structures Fall 2009

As you can see in the examples, we specify the data type of the items we will be storing in the
generic data structure in angle brackets after the structure type. For example, theVector of
Integer:

Vector<Integer> intVec = new Vector<Integer>();

With this declaration, any attempt to store an item which is not of typeInteger or any treatment
of an item retrieved as a non-Integer type will result in a compile-time error.

The generic data types, includingVector andAssociation are provided in thebailey.jar
library, but you will need toimport structure5.*; instead ofimport structure.*;
at the top of your program.

Note: we would like to be able to use a primitive type as a type parameter:

Vector<int> intVec = new Vector<int>();

but this is not permitted – the type parameters must be objecttypes. Fortunately, with autoboxing,
this is not much of an inconvenience to programmers.

From here on, we will make use of the generic classes.

Generic Association Implementation
See Structure Source:
/home/jteresco/shared/cs211/src/structure5/Association.java

In the Association class, we in fact make use of two type parameters, one for the key and
one for the value. Rather than treating both asObjects as in the non-genericAssociation
implementation, we useK for the type of the key andV for the type of the value.

Everywhere we refer to the key and value in type declarationsfor variables, parameters, or return
types, we can useK andV, respectively.

The rest of the code for the class remains unchanges from the non-genericAssociation.

Generic Vector Implementation
The genericVector class is parameterized on the type of the items (elements) itwill contain. The
implementation usesE as the type.

For the most part, theVector implementation is straightforward. However, a technical problem
comes into play when we declare theVector’s internal array. This is not something we will
concern ourselves with at this point, but the description ofthe problem and of its solution within
structure is worth reading in the text.

2


