
Computer Science 210
Data Structures
Siena College
Fall 2020

Topic Notes: Linked Structures

Recursive Data Structures
We have seen that constructs such as arrays and ArrayLists allow us to group together col-
lections of elements using a single name. These work very well in many situations, but are not
always going to be the most efficient option. Consider a situation where you often need to add
and remove elements from near the start of a large ArrayList. Each one of those operations,
for an ArrayList of n elements, is an O(n) operation. If that is something we will need to do
frequently, we will want to do better.

Recursion affords us another mechanism to store collections of elements.

General Purpose Recursive Structures
So far, all of our structures for holding general-purpose collections of items have been very simple.
We’ve used only arrays and Vectors/ArrayLists. These have some pretty significant limita-
tions. Vectors/ArrayLists are resizeable, but it is an expensive operation. It’s also expensive
to add or remove objects from the start or the middle of a Vector/ArrayList. We can do better.

We will begin our study of more advanced data structures with lists. These are structures whose
elements are in a linear order.

Singly Linked Lists
The singly linked list structure is built using a collection of list nodes. Each list node is responsible
for keeping track of one list element. The list elements are the values we actually want to store and
retrieve in our data structure.

List Objects .

.

.

.

.

.

.

.

.

.

.

.

head

We will study this idea by looking at a simple implementation of generic singly linked lists.

https://github.com/SienaCSISDataStructuresJDT/sll-example



CSIS 210 Data Structures Fall 2020

The list implementation is in SimpleLinkedList.java, and a main method we will use to
learn how this list works is in NotesExample.java. As we trace through that main method,
we will look at the details of the implementation and construct a series of memory diagrams (drawn
on the board in class).

Before we start tracing through our example, we will look at the two main object types that repre-
sent a list node and the list itself.

The structure that makes up a list node has two fields:

1. value: the element (whose type here is specified by a type parameter) to be stored in the
list.

2. next: a pointer to the next list node, which will be null for the node containing the last
element.

class SimpleListNode<E> {

protected E value;
protected SimpleListNode<E> next;

}

And the list structure itself is no more than a reference to the list node that contains the first list
element.

public class SimpleLinkedList<E> {

protected SimpleListNode<E> head;
}

We define SimpleListNode in the same Java file as SimpleLinkedList, but public is
not specified in the class header for SimpleListNode, since we aren’t allowing regular users to
create instances of these. Only a SimpleLinkedList<E> can create a SimpleListNode.
Note that the Java file’s name needs to match the public class it defines.

The user who wishes to use a SimpleLinkedList would start by constructing an empty list,
like we do at the start of our main method in NotesExample:

SimpleLinkedList<Double> dlist = new SimpleLinkedList<Double>();

As with any class, this results in a call to a constructor. All the constructor needs to do in this case
is to set the head instance variable to null.

public SimpleLinkedList() {
head = null;

}

2



CSIS 210 Data Structures Fall 2020

Next, we’ll work on adding elements. Adding an element involves two steps:

1. construct a new list node for the element

2. insert the new list node into the list

Let’s think about what this will mean. We add our first element, in our example, a 17.1.

dlist.add(17.1);

We want this list to go from just an empty head reference, to a node pointed at by head which
has a reference to the 17.1 as its value and null as its next.

Our SimpleListNode has two add methods. The one-parameter version just calls that two-
parameter version with a position parameter of 0. So that’s the method we’ll look at.

public void add(int pos, E obj) {...}

The method first does a little error checking. Turns out any add at position 0 is the same in our
implementation, regardless of whether the list is empty. The code below takes care of this caee.

if (pos == 0) {
head = new SimpleListNode<E>(obj, head);
return;

}

We replace the list’s head reference (which is null in this case) with a reference to a new list
node. The constructor for SimpleListNode is straightforward enough, just storing the two
parameters (the value and the next reference) in the node’s instance variables:

public SimpleListNode(E value, SimpleListNode<E> next) {
this.value = value;
this.next = next;

}

In this case, the node’s next instance variable is set to null, as the previous value of the list’s
head reference.

Now, we add another element at the start of the list.

dlist.add(23.0);

3



CSIS 210 Data Structures Fall 2020

The same code is used for this case, but now the list’s head reference starts as a reference to
the list node responsible for the 17.1. That reference becomes the next of the new node we’re
creating for 23.0, which itself becomes the new head of the entire list.

The situation becomes a bit more interesting when we want to add a position other than 0.

dlist.add(1, -3.5);

To achieve this, we need to find the list node after which a new node will need to be inserted to
store the new element, and have that new node’s next reference point to the rest of the existing
list beyond that point.

// we are adding somewhere else, find entry after which we will
// insert our item
int i = 0;
SimpleListNode<E> finger = head;
while (i < pos-1) {

i++;
finger = finger.next();
if (finger == null) {

throw new IndexOutOfBoundsException("Attempt to add at position " + pos + " in list of size " + i);
}

}
// finger points at the node after which we want to add
// so create the new object with finger’s next as its next
// and set finger’s next to the new node.
// note that this also works for the case when we are adding
// to the end
finger.setNext(new SimpleListNode<E>(obj, finger.next()));

This makes use of trivial accessor and mutator methods that allow us to retrieve and modify a list
node’s next field.

The loop here follows next references, counting how many nodes we have “skipped over”. Once
we have skipped pos-1 nodes, our finger reference points at the node after which we need to
insert. Note that if the finger ever becomes null, it means the pos at which we were asked to
insert a value is too large given the current contents of the list.

Once we know where we are inserting, the last line of code in the method accomplishes exactly
what we need:

1. A new list node is created to store the element we are adding,

2. that new list node’s next reference is set to the next reference of the “finger” node, and

3. the “finger” node’s next reference is set to the new list node we just created.

4



CSIS 210 Data Structures Fall 2020

Turns out this same code works when we add at the end of the list:

dlist.add(3, 1.1);

The only difference is that finger’s next reference will be null, resulting in the new node’s
next reference being null, which is exactly what we want for the new last node in our list.

Now that we can construct and populate SimpleLinkedLists, we consider the get method.
Like with corresponding method of Vector/ArrayList, it can retrieve the element at any po-
sition in the list.

Our method call

double val = dlist.get(2);

results in a call to the method:

public E get(int pos) {

// negative positions not allowed
if (pos < 0) {

throw new IndexOutOfBoundsException("Attempt to get from a negative position " + pos);
}

if (head == null) {
throw new IndexOutOfBoundsException("Attempt to get from an empty list");

}

SimpleListNode<E> finger = head;
int i = 0;
while (i < pos) {

i++;
finger = finger.next();
if (finger == null) {

throw new IndexOutOfBoundsException("Attempt to get element " + pos + " from a " + i + " element list");
}

}
return finger.value();

}

Other than some error checking, the code is strikingly similar to add. The only difference here is
that once we’ve followed the correct number of next references to find the list node that contains
the element we are trying to retrieve, we simply access that value (with the value accessor method
of SimpleListNode) and return it.

The next operation used by our NotesExample main method is set:

5



CSIS 210 Data Structures Fall 2020

dlist.set(1, -7.0);

The code for the setmethod (not reproduced here) is almost identical to get. Instead of returning
the value at the desired position, we just set it to the new value and return the old value.

We next have a couple of calls to contains

boolean hasVal = dlist.contains(23.0);
System.out.println("Has a 23.0? " + hasVal);
hasVal = dlist.contains(0.5);
System.out.println("Has a 0.5? " + hasVal);

We again search through list nodes, but instead of counting how many we have skipped over to
find particular one, we check the value in each node until we either find the one we’re searching
for (in which case the method returns true), or reach the end of the list, indicated by the “finger”
becoming null (in which case the method returns false).

The basic structure is the same as get and set.

public boolean contains(E obj) {

// easy when the list is empty
if (head == null) return false;

// otherwise look for it
SimpleListNode<E> finger = head;
while (finger != null) {

if (finger.value().equals(obj)) return true;
finger = finger.next();

}
return false;

}

Next up, we call size, which is also pretty straightforward. Here, we traverse the list nodes,
counting how many we see. When the finger becomes null, we are out of list nodes to count,
and return that count.

public int size() {
SimpleListNode<E> finger = head;
int count = 0;
// count up the number of list nodes until we get a null next
while (finger != null) {

count++;
finger = finger.next();

}
return count;

}

6



CSIS 210 Data Structures Fall 2020

That code is easy enough, but it is quite inefficient (O(n) for an n-element list). More on that later.

Now, let’s consider a harder one: remove(). In general, we will want to be able to remove items
by value or by index. We’ll just implement by index.

There are a number of cases that we need to make sure are considered, though some of the more
specific might end up being taken care of by general cases:

1. remove the only item from a list (in which case it also was the first and the last)

2. remove the first item in a list from a list with at least two elements

3. remove the last item in a list from a list with at least two elements

4. remove an item from the middle of a list from a list with at least two elements

Our running example in NotesExample tests all of these cases.

Let’s see how the remove implementation handles these.

public E remove(int pos) {

After some error checks, we can take care of the “first item” case, where it turns out not to matter
if it is also the only item.

if (pos == 0) {
E retval = head.value();
head = head.next();
return retval;

}

The list’s head reference gets replaced with the next reference of the first node (which contains
the element we wish to remove). Simple enough.

In other cases, we need to find the item we want to remove and adjust some references to “bypass”
the node that contains the element we’re removing.

The key idea here is that we need to have our “finger” on the element before the one we want to
remove, since that’s the one whose next pointer will need to be adjusted.

// remove an item at a non-first position
SimpleListNode<E> finger = head;
int count = 0;
// find the item before the one we want to remove
while (count < pos-1) {

count++;
finger = finger.next();

7



CSIS 210 Data Structures Fall 2020

if (finger == null) {
throw new IndexOutOfBoundsException("Attempt to remove element at index " + pos + " in a list with " + count + " elements");

}
}
// finger is pointing to item pos-1
// make sure there is something at pos
if (finger.next() == null) {

throw new IndexOutOfBoundsException("Attempt to remove element at index " + pos + " in a list with " + count + " elements");
}
E retval = finger.next().value();
finger.setNext(finger.next().next());
return retval;

Removing everything is very simple.

public void clear() {
head = null;

}

What about all those list nodes? We still have references to them! Not to worry, Java’s garbage
collector will clean them up.

However, not all languages are garbage collected like Java. In C or C++, you need to be careful to
free (in C) or delete (in C++) all of the objects you no longer need.

Let’s consider the complexity of our operations.

• add(0) : O(1)

• add(i) : O(i)

• add(n) : O(n)

• get/set(0) : O(1)

• get/set(i) : O(i)

• get/set(n-1) : O(n)

• remove(0) : O(1)

• remove(i) : O(i)

• remove(n-1) : O(n)

• get all values in sequence : O(n2) (we need to do better than this!)

• size() : O(n) (hey, we can do better if we remember this)

8



CSIS 210 Data Structures Fall 2020

How do these compare to similar operations on Vectors/ArrayLists?

• adding at the front is easier.

• adding at the end is harder.

• adding in the middle, well it depends where.

• the cost is consistent, though, since there is no reallocation and copying to grow the structure.

• removing at the front is easier.

• removing at the end is harder.

• removing in the middle is probably similar.

• getting/setting an arbitrary value is harder.

What about space usage?

• there are no empty slots like we have in Vectors/ArrayLists

• but there’s an extra reference for each object stored! That’s O(n) space overhead.

Introducing an Iterator
We still have a couple of problems with this implementation that we’d like to address. First, the
O(n2) traversal is no good – we need a way to remember where we left off on the traversal of the
list from the previous get to more efficiently do the next get.

This is accomplished through a sort of companion class to a data structure called an iterator.

An iterator must remember some state about the collection it’s visiting. We can think of it as
putting a bookmark in the list reminding us where we left off so we can pick up there the next time
we retrieve a value. As with many data structures, to create an iterator over a linked list, we will
need to know something about the internals of the list to make this work. The most useful thing to
remember here is the list node – that “finger” we used in most of the methods we’ve looked at.

Java provides an interface for this purpose in java.util.Iterator, and that is what we use
in our linked list’s iterator implementation:

class SimpleListIterator<E> implements java.util.Iterator<E> { ...

As with other interfaces we have seen, like Comparable and Comparator, Iterator re-
quires specific methods to be provided by any class that implements it. The Iterator re-
quires three methods: hasNext, next, and remove. The first two might sound familiar from
your use of the Scanner class, and they play the same roles here: hasNext tells you if there is

9



CSIS 210 Data Structures Fall 2020

more data in the structure that has not yet been returned by the iterator, and next returns the next
such value. We will not be concerned about the remove method, but you will see it is included in
our implementation.

A first thing to notice is that this is not a public class, meaning that it can only be constructed
here inside the classes of our SimpleLinkedList.

The iterator needs an instance variable to be our “bookmark”. We will see that at all times, it
either points to the list node that contains the next item to be returned by the iterator, or is null,
indicating that there are no more items to return.

protected SimpleListNode<E> current;

To construct one, we need to have the head of the list passed in:

public SimpleListIterator(SimpleListNode<E> t) {
current = t;

}

So the current pointer always points to the next node whose value has not yet been returned.
From this, we can construct the remaining methods:

public boolean hasNext() {
return current != null;

}

public E next() {
E temp = current.value();
current = current.next();
return temp;

}

And in the SimpleLinkedList class, we have a method to create one:

public Iterator<E> iterator() {
return new SimpleListIterator<E>(head);

}

We also make our SimpleLinkedList implement yet another interface called Iterable.
This tells Java that the class provides an iteratormethod. This allows us to traverse the contents
of our SimpleLinkedLists using enhanced for loops.

So if we have a list:

SimpleLinkedList<Integer> a = new SimpleLinkedList<Integer>();

10



CSIS 210 Data Structures Fall 2020

which is then populated with n values, the code to traverse this list without an iterator would look
like this (of course the println could be replaced with whatever code we wish to use to process
each element of the list):

for (int i = 0; i < a.size(); i++) {
System.out.println(a.get(i));

}

which we saw results in a total cost of O(n2), would we replaced with a loop based on the iterator:

for (Iterator<Integer> iter=a.iterator(); iter.hasNext(); ) {
System.out.println(iter.next());

}

or formulated as a while loop:

Iterator<Integer> iter = a.iterator()
while (iter.hasNext()) {

System.out.println(iter.next());
}

or with an enhanced for loop, which uses the iterator implicitly:

for (int x: a) {
System.out.println(x);

}

In all of these cases, the fact that the iterator remembers the position within the list means the entire
traversal is now done in O(n). Much better!

Maintaining an element count
We can improve the efficiency of the size() method by maintaining an extra instance variable
that tracks how many elements are in the list.

Which methods would need to change to do this?

• count needs to be initialized in the constructor

• increment count in add

• decrement count in remove

• reset count to 0 in clear

11



CSIS 210 Data Structures Fall 2020

• simplify size to return count

This seems worthwhile. We’ve added some work to our methods, but it’s all O(1), and we only
added a single int to the size of the structure. The biggest disadvantage of adding a count is
that we could forget to update it in some circumstance, leading to an inconsistent structure. For
example, there are three different cases in the addmethod, and we need to make sure we increment
the count in each.

Maintaining a tail pointer
There’s another enhancement we can consider. Adding elements to the end of the list is an opera-
tion we might like to make as efficient as possible. It’s an O(n) operation in this implementation
because we need to follow all the links from the head to find the last element, so we can add it.

We can fix that by maintaining another reference to the tail of the list. Some things to note about
such an implementation:

• An empty list has both head and tail as a null reference , a list with one element has
both head and tail as a reference to that one element’s list node, while in all other cases,
head and tail refer to different list nodes.

• Our add operation in the final position is straightforward (the new node is stored at the
tail node’s nextElement and the tail is updated to refer to the new node. This is
O(1).

• The tail reference makes a get or set of the last element an O(1) time operation.

• But a remove from the end is still O(n). We need tail’s predecessor to be able to remove
the last item, and we have to search all the way from the beginning to find it.

Still, this seems like a worthwhile enhancement. We add just one extra reference and have some
efficiency benefits.

That said, it adds coding complexity to the add and remove methods since we must worry about
resetting the tail field. Even adding at the beginning may have to reset tail field (think about
why).

12


