
Computer Science 210
Data Structures
Siena College
Fall 2020

Topic Notes: Java Classes

You have been writing programs that operate on data (i.e., variables and parameters) that we can
categorize in just two ways:

• primitive types, such as int, double, char

• object types, such as String, Scanner, Random, DecimalFormat

Here, we focus on these object types a bit more. In particular, we will think more carefully about
introducing our own object types into our programs.

Objects and Classes
We already looked at one way to have a single entity in Java refer to multiple items: the array.
Arrays are very convenient for many purposes, but they have some important restrictions:

1. all of the items in the array must be of the datatype declared in the array’s declaration and
construction

2. we can only refer to array elements by their subscript (or index), which must be a number
from 0 to n− 1 for an array of length n

Among other benefits, classes allow us to overcome both of these restrictions.

Every object in a Java program is an entity that can contain both fields, or instance variables –
which are in many ways like the local variables you’ve been using in your programs almost from
the beginning, and methods (or member methods), which operate on the data in those fields.

The idea of an object is central to the object-oriented programming paradigm, which has been very
popular since being introduced a few decades ago.

The idea is that we write program components, called classes, which represent templates for the
objects we wish to represent in our program. For each object, we include fields that are used to
represent the state of the object and methods that allow that state to be queried or modified.

A text I used previously includes an example of an alarm clock. They came up with a list of fields
that can be used to describe the state of an alarm clock. It is similar to this list:

• the current hour (0-23)



CSIS 210 Data Structures Fall 2020

• the current minute (0-59)

• the current second (0-59)

• the alarm hour (0-23)

• the alarm minute (0-59)

• the alarm status (on or off)

And some methods that can be used to modify the state of the alarm clock:

• set current time

• set alarm time

• disable alarm

• enable alarm

• stop currently sounding alarm

We might also consider some methods to query the current state of the alarm:

• get current time

• get alarm time

• get alarm status (on or off)

And then the alarm clock might have some other things it does “on its own” – its state changes as
the time proceeds:

• increment time by 1 second

• start sounding alarm

In Java, the functionality of an object is described in a class. Beginning programmers in Java need
to write classes as containers for our main, and in some cases, a few other methods. This is just a
small fraction of what a Java class can be used to do.

We look at a mechanism to achieve this by a simpler example. Consider this example, which is
written with all code in its main method.

https://github.com/SienaCSISDataStructuresJDT/RatiosNoClass-example

This program maintains information about ratios of integer values. We create two ratios, each rep-
resented by 2 int variables, and print them, modify them, and compute their decimal equivalents.

2



CSIS 210 Data Structures Fall 2020

But with a class that represents a Ratio object, we can encapsulate the numbers (the numerator
and denominator) into fields, and provide methods to construct (the constructor(s)), access (the
accessor methods), and modify (the mutator methods) the fields.

See this example and the extensive comments within for details. Start with the version in the
“basic” directory.

https://github.com/SienaCSISDataStructuresJDT/Ratios-example

A Memory Diagram
It is important at this point to start thinking carefully about exactly how and where Java allocates
memory for the variables in our programs. Throughout the semester, we will make memory dia-
grams of varying detail and complexity. We begin by making one for the example above.

When constructing a memory diagram for a Java application (i.e., a Java program we launch by
calling its main method), we start by allocating memory for main’s parameter and any local
variables. We will think more carefully soon about the fact that this memory is allocated on the
call stack, but for now, we’ll just draw it as a box labeled with the names of any parameters and
local variables for our method. In this case:

args is the one parameter to main, and that gets initialized with a reference to any command-
line parameters we pass to our program. Since in this case, we aren’t expecting any, we will just
represent those as the empty box. The main method also has two local variables, a and b, each of
which is a reference to a Ratio object. At this point in our diagram construction, these have not
yet been given values. Java does not provide local variables with any default values, so we leave
those boxes blank.

Now, we’re ready to look at the actual execution of the main method. The first line:

Ratio a = new Ratio(4, 6);

causes many things to occur, and we will consider many of them in some detail, updating our
memory diagram for each step that affects it.

That line is an object construction and an assignment of a reference to that new object to a local
variable. Before anything can happen, Java needs to find the Ratio class, and locate the con-

3



CSIS 210 Data Structures Fall 2020

structor that takes two int parameters. Once it locates the class, it will allocate memory for the
instance variables of the Ratio class from heap memory.

Going forward, we will separate the memory allocated into the stack (typically on the left) and the
heap (typically on the right).

Our Ratio class has two instance variables of type int, named numerator and denominator.
Java automatically initializes all instance variables with zero, false, or null values, as appro-
priate. So our int variables get 0.

Next, Java sets up the call to the constructor, which acts much like a method. We get a chunk
of memory (this time stack memory) large enough to hold the parameters to the constructor, any
local variables in the constructor, and the special this reference that will tie this constructor call
to its object. The formal parameters num and den have their values initialized using the actual
parameter values from the construction (in this case, 4 and 6). The this reference is initialized to
point to the instance variables we just created in the previous step.

Now we are ready to execute the body of the constructor. This one is pretty straightforward, it’s just
two assignment statements. But even there, things are not trivial. There are four names involved
in the two assignment statements, and Java needs to figure out which of the boxes in our diagram
have the values we want to read or are the locations we want to write in each. The process is
straightforward. It first looks in its list of parameters and local variables for a matching name.
If none is found, it follows its this reference to look for a matching instance variable. In our

4



CSIS 210 Data Structures Fall 2020

case, num and den are found in the parameters/locals list in stack memory, and numerator and
denominator are found by following the this reference to the instance variable list.

Once these two assignment statements are executed, our instance variables now have taken on the
values of the parameters.

When the constructor returns, two things happen: its memory for parameters and local variables
goes away, and it returns the reference to the new object’s instance variables. In our case, we’re
storing that reference in main’s local variable a.

The same set of steps happens when we construct the second Ratio and store it in b.

5



CSIS 210 Data Structures Fall 2020

Next up in the main method is

System.out.println("Ratio a is " + a);

As you might recall, this results in a call to a’s toString method. Any method call requires Java
to allocate memory on the stack for its parameters, local variables, and in the case of non-static
methods, the this reference to the object’s instance variables. Since Ratio’s toString
method has no parameters or local variables, it’s just this.

6



CSIS 210 Data Structures Fall 2020

An important thing to notice here is that toString’s this reference is initialized to the object
reference, in this case, a.

When the line printing a using its toString method implicitly completes, its chunk of memory
on the stack is deallocated, and we do the same things for the explicit call to b’s toString
method.

Moving things along a little more quickly, since it’s the same idea as what we just saw, the calls to
getDecimalValue on each of a and b would also result in chunks of memory on the stack for
each of their calls.

7



CSIS 210 Data Structures Fall 2020

A bit more interesting is the call to

a.setNumerator(1);

Again, it’s a method call, but this one does have a parameter. To set up the method call:

8



CSIS 210 Data Structures Fall 2020

We have a slot for the formal parameter num, initialized to the value of the actual parameter, 1.
Then the this reference, initialized to the object, which is the thing that comes before the . in
the call.

Now the setNumerator method is ready to execute, and it changes the value of a’s numerator.

The same process applies to the next call.

b.setDenominator(10);

The setup:

9



CSIS 210 Data Structures Fall 2020

And when the method executes, b’s denominator is updated. Shown below is the state of
memory just before setDenominator.

Adding a static Variable
In the “counted” directory of the example repository, there is a modified version of the Ratio

10



CSIS 210 Data Structures Fall 2020

class that includes a class variable – one with the static qualifier, that counts the number of
Ratio objects created.

No matter how many Ratio objects are created, there will always be exactly one copy of the
countRatiosUsed class variable. It is accessible in methods of all instances of the class, and
would also be accessible in any static methods of the Ratio class, if it had any.

In class, we will see how to represent class variables in a memory diagram using the specific
example of the main method in CountedRatios.

11


