
Computer Science 210
Data Structures
Siena College
Fall 2019

Topic Notes: Trees

We’ve spent a lot of time looking at a variety of structures where there is a natural linear ordering
of the elements in arrays, vectors, linked lists. We then put some restrictions on those structures,
looking at stacks, queues, deques, and ordered structures.

Just like we can write programs that can branch into a number of directions, we can design struc-
tures that have branches.

Today, we’ll start looking at our first more complicated structure: trees.

In the structures we have studied so far, elements are very specifically ordered. In our list structures,
we can refer to elements by an index. One way to think of this is that every element has unique
successor.

In a trees, an element may have multiple successors.

We usually draw trees vertically, but upside-down, in computer science.

You won’t see trees in nature that grow with their roots at the top (but you can see some at Mass
MoCA over in North Adams).

Examples of Trees
Expression trees

One example of a tree is an expression tree:

The expression

(2*(4-1))+((2+7)/3)

can be represented as

+

* /

2 - + 3

4 1 2 7



CSIS 210 Data Structures Fall 2019

Once we have an expression tree, how can we evaluate it?

We evaluate left subtree, then evaluate right subtree, then perform the operation at root. The
evaluation of subtrees is recursive.

Tournament Brackets

Another example is a tree representing a tournament bracket:

1 16 8 9 4 13 5 12 2 15 7 10 3 14 6 11

1 8 4 5 2 7 3 6

3241

1

1

2

or

1 8 9 4 5 12 2 7 10 3 6 11

1 8 4 5 2 7 3 6

3241

1

1

2

Tree of Descendants

One popular use of a tree is a pedigree chart – looking at a person’s ancestors. Instead, let’s look
at a person’s descendants. (Example drawn in class).

Tree Definitions and Terminology
There are a lot of terms we will likely encounter when dealing with tree structures:

A tree is either empty or consists of a node, called the root node, together with a collection of
(disjoint) trees, called its subtrees.

• An edge connects a node to its subtrees

• The roots of the subtrees of a node are said to be the children of the node.

2



CSIS 210 Data Structures Fall 2019

• There may be many nodes without any successors: These are called leaves or leaf nodes.
The others are called interior nodes.

• All nodes except root have unique predecessor, or parent.

• A collection of trees is called a forest.

Other terms are borrowed from the family tree analogy:

• sibling – nodes sharing the same parent

• ancestor – a node’s parent, parent’s parent, etc.

• descendant – a node’s child, child’s child, etc.

Some other terms we’ll use:

• A simple path is series of distinct nodes such that there is an edge between each pair of
successive nodes.

• The path length is the number of edges traversed in a path (equal to the number of nodes on
the path - 1)

• The height of a node is length of the longest path from that node to a leaf.

• The height of the tree is the height of its root node.

• The depth of a node is the length of the path from the root to that node.

• The degree of a node is number of its direct descendents.

• The idea of the level of a node is defined recursively:

– The root is at level 0.

– The level of any other node is one greater than the level of its parent.

Equivalently, the level of a node is the length of a path from the root to that node.

We often encounter binary trees – trees whose nodes are all have degree ≤ 2.

We will also orient the trees: each subtree of a node is defined as being either the left or right.

For binary trees, there are additional properties to consider, though not all terms are universally
accepted to have the meanings below.

• a full binary tree is one in which every node has either 0 or 2 children (i.e., no only children
allowed)

3



CSIS 210 Data Structures Fall 2019

• a complete binary tree is one where each level contains all possible nodes exept the last, and
any missing nodes must be all the way to the right

• a perfect binary tree is one where all levels in existence contain all possible nodes (some
texts use this as the definition of a full tree)

A Binary Tree for Arithmetic Expressions
Much like we did for our first linked list, the RatioList that was capable of storing only Ratio
objects, we will consider a specialized binary tree as our first actual tree stucture. This one will
store and evaluation binary expression trees.

A More Generic Binary Tree
There are many possible specifications and implementations of binary trees that allow reasonable
insertion and deletion of elements.

We will consider the one provided in the structure package.

Unlike what we have seen for most of the structures to this point, the structure package does not
define an interface for binary trees and then use implement that in one or more concrete classes.
Structure simply implements the concrete class BinaryTree.

Unlike the linked list implementations, where we do not give the users of the structures access to
the actual list nodes, the binary tree exposes more of its structure to users. The actual recursive
data structure is given directly to users. Given this design decision, the implementation needs to
ensure that changes that might be made by users cannot render a tree invalid. For example, if node
A has a child reference to a node B, then it must always be the case the node B’s parent reference
is to A.

The tree is constructed of instances of class BinaryTree. Each BinaryTree object has the
fields it needs to store its value and the parent and child references.

See Structure Source:
structure5/BinaryTree.java

A node has 4 fields, which we might draw as follows:

right

parent

val
left

There are plenty of things to notice and think about here:

• We have three constructors.

4



CSIS 210 Data Structures Fall 2019

1. The first is used to create an “empty” BinaryTree. We will see this constructor
used by the other constructors to create these empty trees in place of having null
references to represent empty subtrees. This allows most methods to be called on these,
eliminating lots of special cases. We could also use null to represent empty trees, but
this would mean some extra code in several methods. Note that only empty tree nodes
may contain a null value. Regular tree nodes must contain non-null values.

2. The second constructor creates a tree node with no children (a leaf node) containing a
particular value.

3. The third constructor creates a tree node that may have children. Note that if a user of
this constructor specifies a null child, it is replaces with an empty tree instance.

• We have accessors to retrieve the children or parent of a node.

• Note that the value and subtree links can be set by the user, but the parent reference is set
only in a protected method. This is done to make sure we don’t put the tree into a (bad)
state mentioned above where a parent points to a child but the child doesn’t point back to the
parent.

• We have a variety of other (self-explanatory) methods to retrieve information about a tree:
size, root, height, depth, isFull, isEmpty, isComplete. Note the recursive
nature of many of these methods.

Binary Tree Example
We can convert our earlier example of a binary expression tree to use structure5’s BinaryTree
implementation.

The example again represents the arithmetic expression:

((4+3)*(10-5))/2

See Example: BinaryExpressionTree

There are two versions of this program:

1. BinaryExpressionTree.java stores the operators and values to be used as Strings.

• This lets us use a BinaryTree<String>.

• Since some are operators and some are numbers, we need to check and treat as appro-
priate, based on the contents of the String.

2. BinaryExpressionTreeObject.java stores the operators as Characters and the
numbers as Integers.

5



CSIS 210 Data Structures Fall 2019

• Here we instead use a BinaryTree<Object>, since that’s the type that can repre-
sent both a Character and an Integer.

• We check the actual type of the value retrieved with the instanceof operator and
use the value as appropriate

In both cases, note the treeString method that prints our binary tree in a nice format.

Tree Traversals
Iterating over all values in our linear structures is usually fairly easy. Moreover, one or two order-
ings of the elements are the obvious choices for our iterations. Some structures, like an array or a
Vector, allow us to traverse from the start to the end or from the end back to the start very easily.
A SinglyLinkedList, however, is most efficiently traversed only from the start to the end.

For trees, there is no single obvious ordering. Do we visit the root first, then go down through the
subtrees to the leaves? Do we visit one or both subtrees before visiting the root?

Think about the orderings we used for the expression tree: one was used to evaluate (where we
needed to do something with both children before we could apply an operator) and a different
one was used to print it (where we needed to print the operator between the left and right child
printouts).

We will consider 4 standard tree traversals for our binary trees:

1. preorder: visit the root, then visit the left subtree, then visit the right subtree.

2. in-order visit the left subtree, then visit the root, then visit the right subtree.

3. postorder: visit the left subtree, then visit the right subtree, then visit the root.

4. level-order: visit the node at level 0 (the root), then visit all nodes at level 1, then all nodes
at level 2, etc.

For example, consider the preorder, in-order, and postorder traversals of the expression tree we
looked at in the example code:

• preorder leads to prefix notation:
/ * + 4 3 - 10 5 2

• in-order leads to infix notation:
4 + 3 * 10 - 5 / 2

• postorder leads to postfix notation:
4 3 + 10 5 - * 2 /

6



CSIS 210 Data Structures Fall 2019

The iterator concept fits nicely with tree traversals, but since the code for the iterators in the text is
somewhat complex, so we will first consider traversals without iterators.

In our first traversal examples, we will build a small binary tree of Integer values and call
methods that perform the traversal. Here, “visiting” a tree node involves passing its value to the
method process.

See Example: BTTraversals

First, note the construction of the tree. We build the tree from bottom up, but do not store the
subtrees in local variables during construction – we simply construct them in the parameters of the
constructor for the next level up.

Now, consider each of the traversal implementations. The in-order, preorder, and postorder traver-
sls work exactly as we would expect. Each is recursive, and we visit the subtrees and the root node
as defined for each ordering.

The level-order traversal is a bit trickier. We need to visit the root of each subtree before doing
anything in the next level. This calls for a queue!

For all of the others, we used a stack, just without thinking about it. We took advantage of the call
stack to support the recursion!

Tree Iterators
The structure package has implementations of iterators for each of these four traversals. Whereas in
the do{pre,post,in}ordermethods above, we were able to take advantage of the computer’s
run-time stack, we need to have a stack explicitly declared and used in the iterator implementations.

The complexity of the iterators varies with the type of traversal.

We need to make sure we get things onto the stack (or queue, in the case of the level order) in the
right order.

At any time, we want the stack/queue to contain the tree nodes that still need to be visited.

Visiting a non-leaf node will result in additional nodes being added to the stack/queue.

In all cases, iteration can continue as long as something remains on the stack/queue.

We will consider this example tree:

1 8

107

9

5

4

2

3

6

7



CSIS 210 Data Structures Fall 2019

In each case, recall that we need to satisfy the iterator interface (actually, the AbstractIterator
in structure) by providing:

1. a constructor

2. a reset method

3. a hasNext method

4. a next method

5. a get method

We look at each in turn.

See Structure Source:
structure5/BTPreorderIterator.java

Our preorder traversal visits the root first, followed by the left subtree, then the right subtree.

Recall that we implicitly used the run-time stack for the non-iterator traversal code. Here, we
manage the stack.

At any point, we want the tree node on the top of the stack to be the next tree node that needs to be
visited.

We want to visit the root, then the left subtree, then the right subtree.

So to start or reset our iteration, we initialize the stack with the root node.

A next operation just involves popping, then processing the node on top of the stack, then pushing
its right and left subtrees (in that order, since we want to process the left first).

Finally, we can implement hasNext by just checking if the stack is empty, which will tell is that
the traversal has been completed.

See Structure Source:
structure5/BTInorderIterator.java

For this traversal, we need to visit the left subtree, then the root, then the right subtree.

Here, the first thing we want to visit is the deepest, leftmost child. So we need to initialize the state
of our iterator so that that node (the deepest, leftmost child) is on top of the stack. To do this, we
push the root, and all of the left subtrees until we come to a node which doesn’t have a left subtree.

A next operation here involves popping the top value off the stack to be returned, then dealing
with its right subtree. The first thing there that needs to happen is again its leftmost branch, so we
need to push the right subtree then all of its left children.

See Structure Source:
structure5/BTPostorderIterator.java

Here, we visit the left subtree, then the right subtree, and finally the root.

8



CSIS 210 Data Structures Fall 2019

This is the tricky one. First, if there is a left subtree, we need to push down through those left
subtrees as far as we can. If any node has no left subtree but has a right subtree, push that instead.
Continue to a leaf.

A next operation involves popping the top value to be returned. If the thing we just popped is a
left child, push the sibling and its left children (or right when there is no left) until we get to a leaf
again.

See Structure Source:
structure5/BTLevelorderIterator.java

Here, we visit the tree level by level.

This one is actually quite easy. We have a queue instead of a stack.

We start by enqueueing the root, as this is the first thing we want to visit.

When we visit a node, we enqueue its children.

The BTTraversals example also demonstrates the use of these iterators.

9


