
Computer Science 210
Data Structures
Siena College

Fall 2016

Topic Notes: Recursive Methods

You have seen in this course and in your previous work that iteration is a fundamental building

block that we can use to construct code that implements an algorithm to solve a problem. We will

next spend some time considering another fundamental building block: recursion.

The idea here is that we solve a problem by first solving one or more smaller instances of the

problem, then using those solutions, to solve the original problem.

As a simple example suppose I want to add up everyone’s midterm scores in a class of n students.

A recursive approach to this would be to add up the n − 1 scores from all but one person, giving

me a solution to a smaller instance of the same problem (a problem of size n−1 instead of n), then

taking that total and adding in the score of the person whose exam was initially omitted, giving me

the solution to the original problem.

The recursive approach would solve each of the subproblems recursively as well. That is, the n−1
exams would be tallied by first computing the total of n − 2 of them and adding in the n − 1st. If

you think about this a bit, you’ll also realize we need some way to stop the recursion. Here, we

have two choices, either of which would work. We could say that to add up the exam scores for a

set of 1 exam, we just take that exam’s score as the answer. Or, we can say that to add up the exam

scores for a set of 0 exams results in a total score of 0.

So we can write this procedure a bit more precisely as a set of instructions:

To add scores on n exams:

if there is just one score, the answer is that exam’s score

else

compute the scores of all but 1 exam using these instructions

add in the exam that was not part of the subset computed

return that sum as the answer

Recursive Methods

For our first coding example with recursion, we first look back at an older example:

See Example: Sum1ToN

In particular, our method to compute the sum:

public static int sumNumbersTo(int limit) {

int sum = 0;

CSIS 210 Data Structures Fall 2016

for (int number = 1; number <= limit; number++) {

sum += number;

}

return sum;

}

For the moment, forget this formula:

n
∑

i=1

i =
n(n+ 1)

2

and the fact that it led us to a much more efficient way to compute the sum. We’ll focus on a

formula that represents the iterative method above:

n
∑

i=1

i = 1 + 2 + ...+ n

The “...” in the formula is encoded in Java by the for loop.

Alternatively, we can think about this formula recursively:

n
∑

i=1

i =

{

1 if n = 1

(
∑

n−1

i=1
i) + n otherwise

This says that we can compute the sum of the first n numbers by applying the appropriate rule:

• If n = 1, the sum is trivial and we know the answer is 1. This is called the base case for our

recursion.

• Otherwise, we will apply this same formula to compute the sum of the first n − 1 numbers,

and then add n to that sum to get our answer. This is the recursive case.

In the end, we’ll need the same number of addition operations as we did in the iterative formula.

So let’s look at this translated to a Java method:

See Example: Sum1ToNRec

public static int sumNumbersTo(int limit) {

// first, we check for the base case

if (limit == 1) return 1;

// otherwise, we have to make a recursive method

2

CSIS 210 Data Structures Fall 2016

// call to compute the sum of the first limit-1

// numbers, then add in limit to get our answer

return sumNumbersTo(limit - 1) + limit;

}

The above method looks very simple, but it often completely confuses programmers who are not

experienced in working with recursion. Yes, the method calls itself to be able to compute its

answer.

How can this work? It’s the equivalent of you going up to an expert on addition and asking how to

add together a bunch of numbers. The (unsatisfying) response is “add a bunch of numbers then add

one more time”. If you knew how to add a bunch of numbers, you wouldn’t be asking in the first

place (so you ask again)! It’s like looking up a word in the dictionary only to have the dictionary

use the word in its definition.

But the key here is that each time you ask, there are fewer numbers to add up. Eventually, you will

ask the expert on addition to add a single number, to which the response will finally be “oh, you

have just one number there, the sum is that number.”

The same thing happens here. Your program keeps calling sumNumbersTo with smaller and

smaller values for the limit parameter until limit finally becomes 1, and that method returns

1. The big question is, how do we know how many times it took to get to that point? They key

idea is that your program now has n copies of the limit parameter, whose values range from n

on the initial call, down to 1 on the call that triggers the base case.

I think that to understand this, we need to construct a memory diagram (which will be done in

class).

Comparing Costs

Another thing we want to start to think more carefully about is the relative costs of different ways

to perform a computation. There are many measures of cost that can be interesting in different

contexts, but the most common are computational cost, the amount of work the processor needs to

perform to complete the task, and memory cost, the amount of memory that needs to be allocated

to the program to complete the task.

These values are typically measured as a function of some input parameter or size.

We have three versions of the sumNumbersTo method that we can consider in this context:

the iterative version, the recursive version, and the one that uses the one-step formula. In these

methods, we will think of the “problem size” as the input number – the number of values we want

to add up. Subsequent discussion here will refer to this as n, even though it is named limit in

the formal parameter of the methods.

First, we consider the amount of computing. Here, a meaningful measure is how many arithmetic

operations are required.

For the iterative method, the addition operations are inside the loop – one per iteration. The loop

will execute n− 1 times, so there is a total of n− 1 additions required.

3

CSIS 210 Data Structures Fall 2016

For the method that uses the formula, there is a total of 3 operations, one each of addition, mul-

tiplication, and division. Note that this value stays the same no matter what n is. This is good,

especially for large values of n.

For the recursive method, we need to think a little more. Each time the recursive case executes,

there are two operations in play – we have to do one addition and one subtraction (to compute

limit-1). This might at first seem more expensive than the iterative version, but there we ig-

nored the n additions needed to manage the for loop. There are no arithmetic operations needed

when the base case executes. So what remains is to determine how many times the recursive case

executes before we reach the base case. That number is n− 1 here.

In the first and last cases, we note that the computational cost is directly proportional to n – that

is, the computational cost scales linearly as n increases. A more formal way of saying this is that

the computational cost of these is O(n), usually read “order n” or “Big-O of n”. In the method that

uses the formula, the cost is a constant. That is, it stays the same no matter how large a value of n

we present. More formally, this is a method that executes in O(1) time.

The memory costs are measured by detemining how many parameters and local variables (often

called stack variables) as well as objects and/or arrays constructed with new (called heap vari-

ables) are allocated. In these methods, there are no heap variables involved, so we can focus on

the formal parameters and local variables.

In the non-recursive methods, the method executes just once to complete its work, so there is just

the one copy of each parameter and local variable. The iterative version has three such variables:

the parameter, the local variable sum, and the loop index variable. The formula version has just

the parameter. In either case, the amount of memory needed does not depend on n, so the memory

usage is constant, or O(1).

The recursive method’s memory cost does depend on n, as each recursive call results in another

copy of the parameter limit being created on the stack. Note in particular how each method call

is still in execution until the chain of recursive method calls reaches the base case. We said earlier

that there will be a total of n − 1 recursive calls, and at the peak depth of the recursion, all n − 1
are in execution. This means the amount of memory needed is linearly proportional to n, or O(n).

A Slightly More Interesting Example

As a next example, let’s look at a program to raise numbers to powers:

See Example: Powers

We can see that the basic idea here is to read in a couple of integers, a base and an exponent, and

then raise the base to that power. There are three methods here, all of which compute the same

thing but in different ways.

Before we look at the three methods and the main method that uses them, first a few words

(reminders, for many of you) about the ranges of values that can be represented by Java’s integer

types. Normally, we use the int data type, which uses a 32-bit 2’s complement format to represent

numbers between −231 and 231−1. This is sufficient for the vast majority of programs. If that’s not

enough, we can move up to the long primitive type, which uses 64 bits and can represent values

4

CSIS 210 Data Structures Fall 2016

between −263 and 263 − 1. You will see that the program uses long values for the exponents, and

also uses Java’s long integer literal format by placing an “L” at the end of the integer literals. long

variables can hold some really big numbers, but we can easily exceed those limits when computing

powers. So this program uses a Java API class called BigInteger to represent base values and

computed products, which allows for arbitrarily-large integer values to be represented precisely.

Now on to the methods.

The first, loopPower simply contains a for loop to multiply base by itself exponent times.

Correct, but not especially interesting.

We will focus on the others, first recPower. How does this one work? Clearly, if we evalu-

ate recPower(3,0), the condition exponent==0L is true, so the method should return 1.

Suppose instead we evaluate recPower(3,1). According to the method definition and the fact

that 1!=0, we get that recPower(3,1) = 3*recPower(3,0), and we know the value of

recPower(3,0) is 1. Thus the final answer is 3*1 or 3. The key is that we are using the facts

that b0 = 1 and be+1 = b*b
e to calculate powers. Because we are calculating complex powers

using simpler powers (the recursive calls each are passed an exponent one smaller than the one

with which this call was passed), we eventually get to our base case.

It sometimes helps to imagine that we are having someone else handle the recursive call. That

is, if I want to calculate recPower(3,5), I ask someone else to calculate recPower(3,4),

without caring how they do it, and then, when they give me the answer, 81, multiply that answer

by 3 to get the final answer of 243. It just happens that that “someone else” is using the same

method we’re writing!

Using a simple modification of the above recursive method we can get a very efficient algorithm

for calculating powers, shown in fastRecPower. In particular, if we use either of the first two

methods, it will take 1024 multiplications to calculate 31024. Using a slightly cleverer algorithm

we can cut this down to only 11 multiplications!

In each of the first two methods, the number of multiplications necessary is equal to the value of

the exponent. That is not the case here.

fastRecPower(3,16) = fastRecPower(9,8) // mult

= fastRecPower(81,4) // mult

= fastRecPower(6561,2) // mult

= fastRecPower(43046721,1) // mult

= 43046721 * fastRecPower(43046721,0)

= 43046721 * 1 // mult

= 43046721

Thus it only took 5 multiplications (and 4 divisions by 2) using fastRecPower, whereas it would

have taken 16 multiplications the other way (and divisions by two can be done very efficiently in

binary).

In general it takes somewhere between log2(exponent) and 2 ∗ log2(exponent) multiplications

to compute a power this way. While this doesn’t make a difference for small values of expo-

5

CSIS 210 Data Structures Fall 2016

nent, it does make a difference when exponent is large. For example, computing fastRecPow-

er(3,1024) would only take 11 multiplications, while computing it with either of the other two

methods would take 1024 multiplications.

Why does this algorithm work? It works because it is based on the following simple rules of

exponents:

• base0 = 1

• baseexp+1 = base ∗ baseexp

• base2∗exp = (base2)exp

The key is that by rearranging the order of doing things in a clever way, we can cut down the

amount of work considerably! (Again it is possible to write the above algorithm with a while

loop, but the above recusrive formulation is arguably easier to understand!)

Let’s think a bit more carefully about the relative costs, in terms of both computation and memory.

The costs of the iterative loopPower and straightforward recPower methods are just like the

iterative and recursive methods we saw above. Let n represent the exponent parameter.

The iterative method has a loop that executes n times for a computational cost of O(n). The

memory cost is constant with just a single method call with a couple of parameters and local

variables allocated, so the memory cost is O(1).

The recursive method executes its recursive case n times, with a constant amount of work on

each of those executions, for a total computational cost of O(n). However, each of the method

invocations results in another copy of the parameters being created. So memory cost is O(n).

The fastRecPower method is much more interesting. Each call to the method executes one of

the three cases, each of which itself results in only a constant amount of computation and one copy

of the parameters on the stack. We mentioned about that it takes somewhere between log2(n) and

2 ∗ log2(n) recursive steps, so the computational and memory costs are both O(log n).

Recursion with Arrays

Recursive methods can also be used with arrays. For example, suppose we want to find the largest

element in an array of int. We can write a method quite easily to do this with a loop:

public static int max(int[] a) {

int ans = a[0];

for (int i=0; i<a.length; i++) {

if (a[i] > ans) ans = a[i];

}

return ans;

}

6

CSIS 210 Data Structures Fall 2016

However, the problem can also be decomposed in a recursive manner by thinking about subarrays:

• The largest value in a subarray of size 1 is the value of that 1 element in the subarray

• The largest value in a subarray with at least 2 elements is the larger of the value in the first

element and the largest in the subarray consisting of all but that first element

Or as a method, where we pass in the first element of the subarray we wish to consider:

public static int maxRec(int[] a, int start) {

// base case: looking at the last element

if (start == a.length-1) return a[start];

// recursive case: max of a[start] and the

// max of the rest

int maxofRest = maxRec(a, start+1);

if (maxOfRest > a[start]) return maxOfRest;

return a[start];

}

Such a method is often combined with a helper method that tacks on the extra parameter that we

would not want a user of our method to have to include (as it would normally be 0 to start the

search for the max at position 0):

public static int max(int[] a) {

return maxRec(a, 0);

}

Similar methods can be used on Strings, which are after all, essentially arrays of characters.

Recursive Method Summary

We can both write and understand recursive programs as follows:

1. Write the base case. Convince yourself that this works correctly.

2. Write the “recursive” case.

• Make sure all recursive calls go to simpler cases than the one you are writing. Make

sure that the simpler cases will eventually get to a base case.

• Make sure that the general case will work properly if all of the recursive calls work

properly.

7

