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Recursive Data Structures

We have seen that constructs such as arrays and Vectors/ArrayLists allow us to group to-

gether collections of elements using a single name. These work very well in many situations, but

are not always going to be the most efficient option. Consider a situation where you often need to

add and remove elements from near the start of a large Vector/ArrayList. Each one of those

operations, for a Vector/ArrayList of n elements, is an O(n) operation. If that is something

we will need to do frequently, we will want to do better.

Recursion affords us another mechanism to store collections of elements. We begin this discussion

with a custom class that can hold an arbitrary number of our Ratio objects.

See Example: RatioListApplet

This example looks much more complex than it really is, as much of the code supports the Swing

GUI interface.

There are three classes here, and we will examine them one at a time.

First, the Ratio class is the one we saw earlier in the course, but with some of the verbose

comments stripped out and a few methods added. One of these is the non-destructive add method

you wrote for an earlier assignment.

One of a bit more interest is the reduce method. Hopefully you recall that to reduce a fraction

to lowest terms, you find the greatest common divisor (GCD) (sometimes called the “greatest

common factor”) of the numerator and the denominator – the largest number that divides both

evenly – then divide both the numerator and denominator by that GCD. One method to compute a

GCD is called Euclid’s Method, and that is what is implemented by the gcd method in the Ratio

class. This is a recursive method!

The first line of the method is the base case: the GCD of any number with 0 is that other number.

The second line is just a way to swap the order of the parameters when the first is larger than the

second. The third line is the recursive case that applies Euclid’s algorithm. The key thing we need

to notice here is that the parameters will always become smaller on each recursive step. Eventually,

the base case will come into play.

The RatioListApplet class implements a kind of “ratio list calculator” program. The idea is

that we have a display area that can show a single ratio at any given time. We can type in numbers

to change that ratio, we can reduce that ratio to lowest terms, we can store the ratio in the display

in a list of ratios, we can compute and display results of a few operations on the list of ratios (the

sum, the min, and the max), and finally we can reduce all ratios in the list to lowest terms.
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The vast majority of the code in RatioListApplet constructs and manages the GUI. We are

most interested in its use of the other class in this project, the RatioList to keep track of the list

of ratios. Before we look at its implementation, let’s see how it’s used.

The RatioList instance variable starts out as null, indicating that there are no ratios in the

list. New ratios are added to the list in the first part of the actionPerformed method. The

construction is different from those we have seen before:

ratios = new RatioList(newOne, ratios);

where newOne is a Ratio just constructed from the values in the text fields of the display.

Think about what we see here: the constructor for the RatioList takes a RatioList as a

parameter. We then replace our reference to the RatioList that we passed in with the new one

that was just returned.

Let’s shift our attention to the RatioList class to see how this constructor is implemented and

what instance variables we find there. To this point, when we’ve wanted to store a collection of

objects, we have used arrays and ArrayLists, but we find neither of those in RatioList.

Instead, we have an instance variable to hold a single Ratio object, and another to hold another

RatioList. Just like our recursive methods use themselves to as part of the solution, this class

has another instance of itself as an instance variable: it is a recursive structure. How can this

be? It’s a similar idea to a recursive method, where eventually we get to a base case. Here, we

eventually get to a situation where the rest instance variable is null.

Hopefully this will make more sense as we continue looking at this. We start with the constructor.

Like many of our constructors, this one simply remembers its parameters in instance variables.

Consider what happens when a series of calls to the constructor is made to add Ratio values to

our RatioList. (Which we will work through in class.)

Once we have seen how a RatioList is built up, we can consider some of the other methods.

Let’s start with getMin (and its very close cousin, getMax).

We want to be able to retrieve the smallest value from a RatioList object. Remember that an

object needs to be able to answer a question like this using only the information in the provided

parameters and its instance variables. Here, all we have are the two instance variables: the Ratio

called first and the RatioList called rest.

Given this situation, there are two main possibilities:

1. rest is null, which means the only Ratio in this RatioList is the one in first, so

that must be the smallest one.

2. rest is not null, in which case there is at least one other Ratio contained in rest’s

instance variable, possibly more. So here, we ask rest what its smallest value is (after all,

we’re writing a method to do that), and compare that to the value we have here in first.

The smaller of those two Ratios must be the smallest in the whole list!
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That’s exactly what’s done in the code. We have a recursive method operating on our recursive

data structure. As with our recursive methods before, we can identify the base case: when rest

is null, and the recursive step: when we call rest.getMin().

With previous recursive methods, we had to make that each recursive call would get us closer to the

base case. The same is true here. As long as we have constructed our RatioList properly, each

recursive call gets us closer to the subsequent RatioList that has a null value for its rest.

For getMin and getMax, we are essentially doing a search. For toString and getSum, we

are visiting all of the values and building up a result.

The getSum method computes the sum of the entire RatioList’s Ratios. It does so by

determining whether there is anything in rest. If not, the sum is trivial: it’s first. Otherwise,

it’s the sum of first with the result of our recursive call to getSum.

The toString method works similarly, but instead of adding Ratios together to accumulate

the sum recursively, we concatenate the String representations of each Ratio object returned

by its toString method.

Finally, reduceAll doesn’t accumulate any result or search, it modifies each Ratio in the list.

It also does so recursively. It reduces the first to lowest terms, using Ratio’s reducemethod.

Then, if the rest is not null, it makes a recursive call to reduce the rest.

General Purpose Recursive Structures

So far, all of our structures for holding general-purpose collections of items have been very simple.

We’ve used only arrays and Vectors/ArrayLists. These have some pretty significant limita-

tions. Vectors/ArrayLists are resizeable, but it is an expensive operation. It’s also expensive

to add or remove objects from the start or the middle of a Vector/ArrayList. We can do better.

We will begin our study of more advanced data structures with lists. These are structures whose

elements are in a linear order.

Singly Linked Lists

The singly linked list structure is built using a collection of list nodes. Each list node is responsible

for keeping track of one list element. The list elements are the values we actually want to store and

retrieve in our data structure.

List Objects .
.
.

.

.

.

.

.

.

.

.

.

head

We will study this idea by looking at a simple implementation of generic singly linked lists.
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See Example: SimpleLinkedList

The list implementation is in SimpleLinkedList.java, and a main method we will use to

learn how this list works is in NotesExample.java. As we trace through that main method,

we will look at the details of the implementation and construct a series of memory diagrams (drawn

on the board in class).

Before we start tracing through our example, we will look at the two main object types that repre-

sent a list node and the list itself.

The structure that makes up a list node has two fields:

1. value: the element (whose type here is specified by a type parameter) to be stored in the

list.

2. next: a pointer to the next list node, which will be null for the node containing the last

element.

class SimpleListNode<E> {

protected E value;

protected SimpleListNode<E> next;

}

And the list structure itself is no more than a reference to the list node that contains the first list

element.

public class SimpleLinkedList<E> {

protected SimpleListNode<E> head;

}

We define SimpleListNode in the same Java file as SimpleLinkedList, but public is

not specified in the class header for SimpleListNode, since we aren’t allowing regular users to

create instances of these. Only a SimpleLinkedList<E> can create a SimpleListNode.

Note that the Java file’s name needs to match the public class it defines.

The user who wishes to use a SimpleLinkedList would start by constructing an empty list,

like we do at the start of our main method in NotesExample:

SimpleLinkedList<Double> dlist = new SimpleLinkedList<Double>();

As with any class, this results in a call to a constructor. All the constructor needs to do in this case

is to set the head instance variable to null.
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public SimpleLinkedList() {

head = null;

}

Next, we’ll work on adding elements. Adding an element involves two steps:

1. construct a new list node for the element

2. insert the new list node into the list

Let’s think about what this will mean. We add our first element, in our example, a 17.1.

dlist.add(17.1);

We want this list to go from just an empty head reference, to a node pointed at by head which

has a reference to the 17.1 as its value and null as its next.

Our SimpleListNode has two add methods. The one-parameter version just calls that two-

parameter version with a position parameter of 0. So that’s the method we’ll look at.

public void add(int pos, E obj) {...}

The method first does a little error checking. Turns out any add at position 0 is the same in our

implementation, regardless of whether the list is empty. The code below takes care of this caee.

if (pos == 0) {

head = new SimpleListNode<E>(obj, head);

return;

}

We replace the list’s head reference (which is null in this case) with a reference to a new list

node. The constructor for SimpleListNode is straightforward enough, just storing the two

parameters (the value and the next reference) in the node’s instance variables:

public SimpleListNode(E value, SimpleListNode<E> next) {

this.value = value;

this.next = next;

}

In this case, the node’s next instance variable is set to null, as the previous value of the list’s

head reference.

Now, we add another element at the start of the list.
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dlist.add(23.0);

The same code is used for this case, but now the list’s head reference starts as a reference to

the list node responsible for the 17.1. That reference becomes the next of the new node we’re

creating for 23.0, which itself becomes the new head of the entire list.

The situation becomes a bit more interesting when we want to add a position other than 0.

dlist.add(1, -3.5);

To achieve this, we need to find the list node after which a new node will need to be inserted to

store the new element, and have that new node’s next reference point to the rest of the existing

list beyond that point.

// we are adding somewhere else, find entry after which we will

// insert our item

int i = 0;

SimpleListNode<E> finger = head;

while (i < pos-1) {

i++;

finger = finger.next();

if (finger == null) {

throw new IndexOutOfBoundsException("Attempt to add at position " + pos

}

}

// finger points at the node after which we want to add

// so create the new object with finger’s next as its next

// and set finger’s next to the new node.

// note that this also works for the case when we are adding

// to the end

finger.setNext(new SimpleListNode<E>(obj, finger.next()));

This makes use of trivial accessor and mutator methods that allow us to retrieve and modify a list

node’s next field.

The loop here follows next references, counting how many nodes we have “skipped over”. Once

we have skipped pos-1 nodes, our finger reference points at the node after which we need to

insert. Note that if the finger ever becomes null, it means the pos at which we were asked to

insert a value is too large given the current contents of the list.

Once we know where we are inserting, the last line of code in the method accomplishes exactly

what we need:

1. A new list node is created to store the element we are adding,

2. that new list node’s next reference is set to the next reference of the “finger” node, and
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3. the “finger” node’s next reference is set to the new list node we just created.

Turns out this same code works when we add at the end of the list:

dlist.add(3, 1.1);

The only difference is that finger’s next reference will be null, resulting in the new node’s

next reference being null, which is exactly what we want for the new last node in our list.

Now that we can construct and populate SimpleLinkedLists, we consider the get method.

Like with corresponding method of Vector/ArrayList, it can retrieve the element at any po-

sition in the list.

Our method call

double val = dlist.get(2);

results in a call to the method:

public E get(int pos) {

// negative positions not allowed

if (pos < 0) {

throw new IndexOutOfBoundsException("Attempt to get from a negative position

}

if (head == null) {

throw new IndexOutOfBoundsException("Attempt to get from an empty list");

}

SimpleListNode<E> finger = head;

int i = 0;

while (i < pos) {

i++;

finger = finger.next();

if (finger == null) {

throw new IndexOutOfBoundsException("Attempt to get element " + pos

}

}

return finger.value();

}

Other than some error checking, the code is strikingly similar to add. The only difference here is

that once we’ve followed the correct number of next references to find the list node that contains

the element we are trying to retrieve, we simply access that value (with the value accessor method

of SimpleListNode) and return it.

The next operation used by our NotesExample main method is set:
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dlist.set(1, -7.0);

The code for the setmethod (not reproduced here) is almost identical to get. Instead of returning

the value at the desired position, we just set it to the new value and return the old value.

We next have a couple of calls to contains

boolean hasVal = dlist.contains(23.0);

System.out.println("Has a 23.0? " + hasVal);

hasVal = dlist.contains(0.5);

System.out.println("Has a 0.5? " + hasVal);

We again search through list nodes, but instead of counting how many we have skipped over to

find particular one, we check the value in each node until we either find the one we’re searching

for (in which case the method returns true), or reach the end of the list, indicated by the “finger”

becoming null (in which case the method returns false).

The basic structure is the same as get and set.

public boolean contains(E obj) {

// easy when the list is empty

if (head == null) return false;

// otherwise look for it

SimpleListNode<E> finger = head;

while (finger != null) {

if (finger.value().equals(obj)) return true;

finger = finger.next();

}

return false;

}

Next up, we call size, which is also pretty straightforward. Here, we traverse the list nodes,

counting how many we see. When the finger becomes null, we are out of list nodes to count,

and return that count.

public int size() {

SimpleListNode<E> finger = head;

int count = 0;

// count up the number of list nodes until we get a null next

while (finger != null) {

count++;

finger = finger.next();

}

return count;

}
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That code is easy enough, but it is quite inefficient (O(n) for an n-element list). More on that later.

Now, let’s consider a harder one: remove(). In general, we will want to be able to remove items

by value or by index. We’ll just implement by index.

There are a number of cases that we need to make sure are considered, though some of the more

specific might end up being taken care of by general cases:

1. remove the only item from a list (in which case it also was the first and the last)

2. remove the first item in a list from a list with at least two elements

3. remove the last item in a list from a list with at least two elements

4. remove an item from the middle of a list from a list with at least two elements

Our running example in NotesExample tests all of these cases.

Let’s see how the remove implementation handles these.

public E remove(int pos) {

After some error checks, we can take care of the “first item” case, where it turns out not to matter

if it is also the only item.

if (pos == 0) {

E retval = head.value();

head = head.next();

return retval;

}

The list’s head reference gets replaced with the next reference of the first node (which contains

the element we wish to remove). Simple enough.

In other cases, we need to find the item we want to remove and adjust some references to “bypass”

the node that contains the element we’re removing.

The key idea here is that we need to have our “finger” on the element before the one we want to

remove, since that’s the one whose next pointer will need to be adjusted.

// remove an item at a non-first position

SimpleListNode<E> finger = head;

int count = 0;

// find the item before the one we want to remove

while (count < pos-1) {

count++;

finger = finger.next();
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if (finger == null) {

throw new IndexOutOfBoundsException("Attempt to remove element at index

}

}

// finger is pointing to item pos-1

// make sure there is something at pos

if (finger.next() == null) {

throw new IndexOutOfBoundsException("Attempt to remove element at index

}

E retval = finger.next().value();

finger.setNext(finger.next().next());

return retval;

Removing everything is very simple.

public void clear() {

head = null;

}

What about all those list nodes? We still have references to them! Not to worry, Java’s garbage

collector will clean them up.

However, not all languages are garbage collected like Java. In C or C++, you need to be careful to

free (in C) or delete (in C++) all of the objects you no longer need.

Let’s consider the complexity of our operations.

• add(0) : O(1)

• add(i) : O(i)

• add(n) : O(n)

• get/set(0) : O(1)

• get/set(i) : O(i)

• get/set(n-1) : O(n)

• remove(0) : O(1)

• remove(i) : O(i)

• remove(n-1) : O(n)

• get all values in sequence : O(n2) (hey, we need an Iterator!)

• size() : O(n) (hey, we can do better if we remember this)
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How do these compare to similar operations on Vectors/ArrayLists?

• adding at the front is easier.

• adding at the end is harder.

• adding in the middle, well it depends where.

• the cost is consistent, though, since there is no reallocation and copying to grow the structure.

• removing at the front is easier.

• removing at the end is harder.

• removing in the middle is probably similar.

• getting/setting an arbitrary value is harder.

What about space usage?

• there are no empty slots like we have in Vectors

• but there’s an extra reference for each object stored! That’s O(n) space overhead.

We still have a couple of problems with this implementation that we’d like to address. First, the

O(n2) traversal is no good – we need an Iterator.

Remember, an iterator must remember some state about the collection it’s visiting. With our

Vector iterator example, we just needed to remember the index of the next item to be returned.

Remembering the index doesn’t help us here. We need to remember something about the internals

of the list to make this work. The most useful thing to remember here is the list node – that “finger”

we used in most of the methods we’ve looked at.

We’ll implement our iterator as an extension of the structure package’s AbstractIterator

abstract class:

class SimpleListIterator<E> extends AbstractIterator<E> { ...

This is not a public class, since no one except our SimpleLinkedList is allowed to construct

one.

We need to have data to support the regular iterator operations, plus be able to reset the iterator, so

we need to have our iterator remember the head of the list and the “finger”:

protected SimpleListNode<E> current;

protected SimpleListNode<E> head;
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and to construct one, we need to have the head of the list passed in:

public SimpleListIterator(SimpleListNode<E> t) {

head = t;

reset();

}

To reset, we just set the current to head.

public void reset() {

current = head;

}

So the current pointer always points to the next node whose value has not yet been returned.

From this, we can construct the remaining methods:

public boolean hasNext() {

return current != null;

}

public E next() {

E temp = current.value();

current = current.next();

return temp;

}

public E get() {

return current.value();

}

And in the SimpleLinkedList class, we have a method to create one:

public Iterator<E> iterator() {

return new SimpleListIterator<E>(head);

}

We also make our SimpleLinkedList implement Iterable so we can use it in enhanced

for loops.

Maintaining an element count

We can improve the efficiency of the size() method by maintaining an extra instance variable

that tracks how many elements are in the list.

Which methods would need to change to do this?

12



CSIS 210 Data Structures Fall 2016

• count needs to be initialized in the constructor

• increment count in add

• decrement count in remove

• reset count to 0 in clear

• simplify size to return count

This seems worthwhile. We’ve added some work to our methods, but it’s all O(1), and we only

added a single int to the size of the structure. The biggest disadvantage of adding a count is

that we could forget to update it in some circumstance, leading to an inconsistent structure. For

example, there are three different cases in the addmethod, and we need to make sure we increment

the count in each.

This is exactly what we find in the structure package’s SinglyLinkedList implementation.

See Structure Source:

structure5/SinglyLinkedList.java

Maintaining a tail pointer

There’s another enhancement we can consider. Adding elements to the end of the list is an opera-

tion we might like to make as efficient as possible. It’s an O(n) operation in this implementation

because we need to follow all the links from the head to find the last element, so we can add it.

We can fix that by maintaining another reference to the tail of the list. Some things to note about

such an implementation:

• An empty list has both head and tail as a null reference , a list with one element has

both head and tail as a reference to that one element’s list node, while in all other cases,

head and tail refer to different list nodes.

• Our add operation in the final position is straightforward (the new node is stored at the

tail node’s nextElement and the tail is updated to refer to the new node. This is

O(1).

• The tail reference makes a get or set of the last element an O(1) time operation.

• But a remove from the end is still O(n). We need tail’s predecessor to be able to remove

the last item, and we have to search all the way from the beginning to find it.

Still, this seems like a worthwhile enhancement. We add just one extra reference and have some

efficiency benefits.

That said, it adds coding complexity to the add and remove methods since we must worry about

resetting the tail field. Even adding at the beginning may have to reset tail field (think about

why).
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Circular Lists

Can we simplify things further without changing the “Big-O” behavior by noticing that tail node

of list has a nextElement field that is always “wasted” – it is always equal to null!

If we use that field to point to the beginning of the list, then we don’t need a separate head field.

This is a circularly linked list. The head is always found as tail.nextElement()!

An implementation of this is in the CircularList in the structure package.

See Structure Source:

structure5/CircularList.java

• With this implementation, add at the end is O(1).

• But now it takes one extra dereference (i.e., following a reference) to get to head.

• Only contains, remove, and removeLast are still O(n).

• contains and remove involve searches and seem likely always to be O(n) (unless we

attempt to keep list in order and do binary search - which has its own problems - we’ll

consider this later..).

• However, why can’t we make removeLast O(1)? The problem is that we need to know

the predecessor in order to delete an element from the list.

Doubly linked lists

In our implementations so far, references only go from the front to the back of the list. Why not

put them in the other direction instead? Well we could, and remove from the end would be fast,

but then it would be harder to delete from the front.

So... we can put references in both directions.

This is a more significant change: our list nodes now need more information. We need an extra

field to hold a reference to the previous node, but the space overhead remains O(n).

class DoublyLinkedNode<E> {

protected E data;

protected DoublyLinkedNode<E> nextElement;

protected DoublyLinkedNode<E> previousElement;

}
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With this defined, it is now easy to define a doubly linked list. This time we’ll keep track of both

the first (head) and last (tail) elements of the list so we can get to tail quickly.

This is the DoublyLinkedList in the structure package.

See Structure Source:

structure5/DoublyLinkedList.java

Note that the constructor for DoublyLinkedNodes automatically sets back pointers to maintain

consistency.

removeLast is now O(1), but the tradeoff is that now all addition and removal operations must

set one extra pointer in the list node. We must also worry about maintaining both the head and

tail of the list, with somewhat more complicated cases arising when adding and removing from

a 0-, 1-, or 2-element list.

Design of List Classes

We now have a number of ways to implement linked list structures. To some extent, these are

all interchangeable functionally. We can add, retrieve, remove, search, though there are time and

space tradeoffs involved.

We would like to be able to use them interchangeably. That is, if we write code that uses a

SinglyLinkedList and determine that we want instead to use a DoublyLinkedList or

even a Vector, we should be able to switch without rewriting our code. After all, each of these

classes has substantially the same methods available.

This ability is provided by Java’s interfaces and abstract classes.

We start by defining an interface that we’ll use for a variety of implementations of lists:

• Accessors: isEmpty(), size(), get(), contains(), iterator()

• Mutators: add(), set(), remove(), clear()

See Structure Source:

structure5/List.java

First notice that it extends Structure. This means a List requires the basic operations we

expect on any of our structures.

See Structure Source:

structure5/Structure.java

The text has a simple example of reading in successive lines from a text and adding each line to

the end of a list if it doesn’t duplicate an element already in the list. This is easily handled with the

operations provided.

AbstractLists
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The List interface requires a lot of methods, many of which will be the same in all of the imple-

mentations. So the structure package defines an abstract class for this:

See Structure Source:

structure5/AbstractList.java

Then each of our actual list implementations extends AbstractList, and needs only to fill

in the methods not already provided.

For example, the isEmpty implementation in AbstractList is written in terms of the size

method, so individual implementations need not provide their own isEmpty.

Vector as a List

Given this, we can imagine another implementation of the List interface.

Vector already provides all of the methods required by the List interface. In the structure

package, Vector extends AbstractList.

So we can use a Vector as a “list” as well. Some of the operations are more expensive, but

anywhere we want a List, we can use a Vector.

This leaves 4 classes that implement structure’s List interface (all by extending AbstractList)

in the structure package:

• SinglyLinkedList

• CircularList

• DoublyLinkedList

• Vector

You should understand how each of these structures work, know how to use them correctly, should

be able to develop the internals of any of the methods in these classes, and should understand the

time and space complexities of the implementations.

Lists in the Java API

Java’s builtin API provides a variety of generic classes that perform list-like functionality. Many of

these can be used interchangeably because they implement the java.util.List<E> interface.

The List interface defines a set of common operations that a number of API classes provide.

Programmers can also write their own classes that satisfy the List interface. As long as a user of

a class that implements the interface restricts his or her usage to the methods specified in the inter-

face, different implementations can be swapped in with the only change being in the construction

of the object that implements List. Consider this example:
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See Example: ListInterfaceDemo

We create lists of three of the types that implement the List interface and then use them in various

ways. The main thing to notice here is that the name of the actual type of the list being used (in this

case, ArrayList, Vector, and LinkedList) appears only when constructing each list. We

could change any of those to any other type that implements the List interface, and the remaining

code would continue to work unchanged.

Note that the Java API’s java.util.LinkedList class provides a doubly linked list imple-

mentation.

Recall that different underlying structures do different things more or less efficiently than others,

so depending on which operations we expect to use, it might make more sense to use one structure

over another. But by writing as much of our code using only the methods provided by an interface

common to the options, we can switch among actual implementations later with minimal effort!
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