
Computer Science 210
Data Structures
Siena College

Fall 2016

Topic Notes: Arrays Review

As you know from your prerequisite work, Java includes a fundamental programming language

construct called an array.

In mathematics, we can refer to large groups of numbers (for example) by attaching subscripts

to names. We can represent a set of numbers n1, n2,... An array lets us do the same thing with

computer languages.

Suppose we wish to have a group of elements all of which have type KindOfItem and we wish

to call the group things. Then we write the declaration of things as

KindOfItem[] things;

The only difference between this and the declaration of a single item of type KindOfItem is the

occurrence of “[]” after the type.

Like all other objects, a group of elements needs to be created:

things = new KindOfItem[25];

Again, notice the square brackets. The number in parentheses (25) indicates the number of slots to

create, each of which can hold one of the elements. We can now refer to individual elements using

subscripts. However, in programming languages we cannot easily set the subscripts in a smaller

font placed slightly lower than regular type. As a result we use the ubiquitous “[ ]” to indicate a

subscript. If, as above, we define things to have 25 elements, they may be referred to as:

things[0], things[1], ..., things[24]

We start numbering the subscripts at 0, and hence the last subscript is one smaller than the total

number of elements. Thus in the example above the subscripts go from 0 to 24.

One warning: When we initialize an array as above, we only create slots for all of the elements,

we do not necessarily fill the slots with elements. Actually, the default values of the elements of

the array are the same as for instance variables of the same type. If KindOfItem is an object

type, then the initial values of all elements is null, while if it is int, then the initial values will

all be 0. Thus you will want to be careful to put the appropriate values in the array before using

them (especially before sending message to them! – that’s a NullPointerException waiting

to happen).

The following is an example of a Java application that uses arrays of String, double, and int.



CSIS 210 Data Structures Fall 2016

See Example: GradeRangeCounter

There are a few items here we haven’t used much this semester (the Scanner) but which you

have seen before. There are also examples of arrays declared and initialized as final, and an

example of an array of int allocated with new.

Inserting and Removing with Arrays

We have already seen that there is quite a bit to keep track of when using arrays, especially when

objects are being added. We need to manage both the size of the array and the number of items

it contains. If it fills, we either need to make sure we do not attempt to add another element, or

reconstruct the array with a larger size.

As a wrapup of our initial discussion of arrays, let’s consider two more situations and how we need

to deal with them: adding a new item in the middle of an array, and removing an item from the

end.

For these examples, we will not use graphical objects, just numbers. Arrays can store numbers just

as well as they can store references to objects.

Suppose we have an array of int large enough to hold 20 numbers.

The array would be declared as an instance variable:

private int[] a;

along with another instance variable indicating the number of ints currently stored in a:

private int count;

and constructed and initialized:

a = new int[20];

count = 0;

At some point in the program, count contains 10, meaning that elements 0 through 9 of a contain

meaningful values.

Now, suppose we want to add a new item to the array. So far, we have done something like this:

a[count] = 17;

count++;

This will put a 17 into element 10, and increment the count to 11.

2



CSIS 210 Data Structures Fall 2016

But suppose that instead, we want to put the 17 into element 5, and without overwriting any of the

data currently in the array. Perhaps the array is maintaining the numbers in order from smallest to

largest.

In this case, we’d first need to “move up” all of the elements in positions 5 through 9 to instead be

in positions 6 through 10, add the 17 to position 5, and then increment count.

If the variable insertAt contains the position at which we wish to add a new value, and that new

value is in the variable val:

for (int i=count; i>insertAt; i--) {

a[i] = a[i-1]

}

a[insertAt] = val;

count++;

Now, suppose we would like to remove a value in the middle. Instead of “moving up” values to

make space, we need to “move down” the values to fill in the hole that would be left by removing

the value.

If the variable removeAt contains the index of the value to be removed:

for (int i=removeAt+1; i<count; i++) {

a[i-1] = a[i];

}

count--;

The loop is only necessary if we wish to maintain relative order among the remaining items in the

array. If that is not important (as is often the case with our graphical objects), we might simply

write:

a[removeAt] = a[count-1];

count--;

In circumstances where we are likely to insert or remove into the middle of an array during its life-

time, it usually makes sense to take advantage of the higher-level functionality of the ArrayList,

which we will be considering soon.

3


