Computer Science 202

Introduction to Programming
The College of Saint Rose
Fall 2013

Topic Notes: Repetition

Repetition

People find repetition boring. Fortunately, computers tif@&l this way. This is fortunate because
repetition is the only way we can exploit the full power of arquuter. As we discussed in the first
class, part of the computer’s power comes from the fact than follow the instructions stored
within its memory rapidly without waiting for a human beirggress a button or flip a switch.

In all of the examples we have considered so far, the segearigestructions preformed when a
mouse event occurs are quite short and then the computeo hasttfor us again. The computer
works for a fraction of a second then waits. We could get tmepder to do more work in response
to our mouse events by writing methods with thousands ofonaglof instructions, but this would

be painful.

As a simple example, suppose we want to compute all of theegiestjuaresi.e., 1, 4, 9, 16,
etc) that are less than 100. We could write a program to print tbetmone by one, each with
its own output statement. But what about all perfect squaesthan 1,000? Or 1,000,000? Or
1,000,000,000? None of us are signing up to write that progwéh thousands of printouts.

But we can get the computer to execute thousands or milliomstifictions without writing thou-
sands or millions of instructions ourselves: we can havedneputer execute the same instructions
over and over and over again.

At first, this may seem like a boring and inefficient use of tbmputer. In fact, when in comes to
following instructions, doing the same thing over and o\gaia can be very interesting. Think of
the scribble program or the Spirograph program. Each timdnag the mouse in these programs,
the computer “does the same thing” in the sense that it ezethie same instructions — the body
of onMbuseDr ag. Each time these instructions are executed, however, tmpuair actually
does something different because the meaning of at leasofotte variables referenced in the
instructionspoi nt , has changed.

Consider this example, where we get some “interesting” behdkirough repeating the same
instructions without depending on changes in the mousdiposi

See Example: RailroadClick
Here, we draw a railroad track, one railroad tie at a time, llmking the mouse.

Each time the mouse is clicked, tbeMoused i ck method does the same things. It creates
aFi | | edRect that looks a bit like a railroad tie and it increases the vassociated with the
variablet i ePosi ti on. Becausd i ePosi ti on is increased with each click, the next click

CSC 202 Introduction to Programming Fall 2013

draws its tie a little farther over in the screen. To prevém program from wasting time by
drawing ties no one will ever see, am statement is included that skips the creation of new ties
oncet i ePosi ti on gets large enough.

It is painful to have to click repeatedly to get the ties drawrstead we would like the computer
to continue drawing ties while they are still on the screavaJrovides th@hi | e statement, or
“while loop”, to perform repeated actions. Java includdseotooping constructs that we will see
later in the semester.

The syntax of avhi | e statement is:

whil e (condition)
{

}

As in thei f statement, the condition used in a while must be some expreigat produces a
bool ean value. The statements between the open and closed curlgebsaare known as the
bodyof the loop.

A common way the while loop is used is as follows:

whi | e (condition)
{

do sonet hi ng
change sone variable so that next tinme you do
sonething a bit differently

}

Armed with this construct, we can draw all of our railroadtie thebegi n method.
See Example: Railroad

As in this example, the condition controlling théni | e loop will usually involve the variable
that's changing. If nothing in the condition changes, thaa lbop will never terminate. Such

a condition is called amfinite loop We avoid this, in general, by ensuring that our loops have
a precise stopping condition. While we might be able to lookratlgorithm and say “hey, we
should stop now”, Java will not (and in fact no computer cargeneral) determine if a loop will
not stop.

Armed with this construct, we return to one of our motivatexgamples to seewhi | e loop in a
Java application rather than a graphical applet:

See Example: PerfectSquares
Two examples to develop in class:

Graph paper and random placement of random ovals.

CSC 202 Introduction to Programming Fall 2013

L oopsfor Error Checking

To motivate the use of loops for error checking, consides dlava application:
See Example: MassPikeTolls

The comment at the top of the Java program describes thegonobl

We end up with 3 possible outputs:

e There is a full toll if both entry and exit were at an intercgamumbered 6 or higher, or if
we are driving a truck.

e There is no toll if both entry and exit were at an interchangsbered 6 or lower, and we
are not driving a truck.

e There is a toll on only part of the trip (east of interchangé @)e entered or exited on one
side of interchange 6

See the comments throughout the Java program for more iat@m Note in particular these new
Java methods and constructs:

e The use oSyst em exi t (1) to terminate the program when an error occurs (in this case,
an invalid input was encountered).

e The use of a more complex form dfOpt i onPage. showMessageDi al og to more
clearly indicate an error message as opposed to an infanatmessage like those we
have used previously.

e The use of thé&st r i ng’s equal s method to compar&t r i ng values. We cannot use=
to comparest r i ngs for equality in most cases. Java will accept it, but it dosgtshave the
meaning we wish it to have in this context. More on this latethie semester.

The main problem with this program is that it simply exits lwan error if invalid inputs are
presented. We can use loops to reissue prompts and reradgdvingn an invalid value is entered.

See Example: MassPikeTollsBetter
The changes are all at the start of the program while we ingiues.

See the comments there for details.

Thedo-whi | e Loop

Thewhi | e loop we saw in the last few examples is calledra-test loop That is, we check the
condition before we enter the first time. This allowsfa | e loop to execute its body 0 times if
the condition is initially false.

CSC 202 Introduction to Programming Fall 2013

In some circumstances, we want to execute the loop at least &@uch a loop is calledmost-test
loop.

Consider the problem where we have a sequence of numbersdiantesay prices of items at a
supermarket checkout, for which we want to keep a runnirgg totreport at the end.

Java provides a construct we can use for this purpose édhehi | e loop.

It is basically the same asvi | e loop, except we begin it with the keywodb, follow with the
body of the loop, and end it withahi | e keyword and condition.

do
{

} while (condition);

See Example: Checkout
This example demonstrates ttie- whi | e construct.

This example also introduces the declaration, constmiciind use obDeci mal For mat objects
to format our floating-point output. We will see more exansdbger. But the essentials:

e Like Scanner andJOpt i onPane, we need to tell Java if we intend to usBeci mal For mat
with

i nport java.text.Deci mal Format;

e Before we make use of one, we need to declare a variable ofDgpenal For mat and
construct an instance. The parameter we pass tadmstructoris the number of digits and
any other characters we want. There are two examples inrihiam, more in the text.

e When we want to print out a floating point value as formattedry af theséeci mal For mat
objects, we pass the floating point value to the objefctis mat method. This returns a
St ri ng representation of that value using the specified format.

One other new Java construct here istheassignment operator:
total += itenPrice;

Much like the++ we saw recently for the increment operation (and the coomdipg- - operation
for decrement), this is a shorthand notation for a commognaraming task: adding a value to a
variable and storing the result back in that variable:

total = total + itenPrice;

CSC 202 Introduction to Programming Fall 2013

This shorthand exists for all of the standard arithmeticafes:- =, * =,/ = and%- .

For example, if we wanted to double the value in a variahlee could use the shorthand:
X *= 2;

You are never going to be required to use these shorthandtopgrbut they are convenient, and
you will need to recognize them in my examples.

Counting L oops

All of the loops we wish to have in our programs can be writteimg thewhi | e anddo- whi | e
constructs we have just seen.

However, most programming languages include another rarighat is typically used fotount-
ing loops

Our first example will be a straightforward one: calculatihng sum of the 10 integers.

There are four pieces of information needed here:

1. The name of a variable that will contain the values as watou

2. The first value to be given to the variable

3. The last value to be given to the variable (or sometimea]ueweyond that)

4. The amount by which we change the value each time arouriddpgallowing us to count
backwards, or by 2's or any number of other variations)

Java’'sf or loop organizes these components in a very particular format

for (int nunber = 1; nunber <= 10; nunber ++)

{
}

/] do stuff - but omt nunber++ at end

The code in the parentheses consists of 3 parts; it is notajusindition as in f or whi | e
statements. The parts are separated by semicolons. Theditss executed once when we first
reach the or loop. Itis used to declare and initialize the counter. Theoad part is a condition,
just as inwhi | e statements. It is evaluated before we enter the loop (1® at pre-test loop)
and before each subsequent iteration of the loop. It deflmestopping condition for the loop,
comparing the counter to the upper limit. The third part perfs an update. It is executed at the
endof each iteration of thé or loop, just before testing the condition again. It is usedpgdaie
the counter.

CSC 202 Introduction to Programming Fall 2013

See Example: Sum1Tol0

Notice how thef or localizes the use of the counter. This has two benefits., Rismplifies the
body of the loop so that it is somewhat easier to understamdddy. More importantly, it becomes
evident, in one line of code, that this is a counting loop.

Other variations

Many variations are possible and we will see them frequethtfgughout the remainder of the
course. For example, we coutdunt dowrinstead of up:

See Example: Countdown

This includes not only a count down loop, but a loop whosetistaicondition depends on the
value in a variable instead of an integer constant. We carangerithmetic expression for the
initialization and any boolean expression for the stopiogdition.

If we wanted to count by 2's to add up the even numbers:
See Example: Sum2ToNBy2

We can compute some number of terms of the geometric sum

1,11 1,
2 4 8 16

If we continue this sum infinitely, the series sums to 1 (cam gve it?).
See Example: GeometricFractionalSum

This example has a straightforward counting loop strugtiwe has more work to do each time
around the loop. Not only do we need to make sure we iteratpriger number of times, we also
need to update the value of the next term to be added each toued

The Vi si bl el mage object

We take a break from loops for a brief look at a new Objectdrajeat type that you're likely to
enjoy using.
See Example: Snowman

In the program above, we drag a picture of a snowman arounsttieen. The picture comes from
a “gif” file namedsnowmran. gi f .

The image is certainly too complex to draw using our ObjeatDprimitives. Fortunately, we can
read an image from a file and save it as an object with tymege. | mage is a built-in Java
class from the library ava. awt . Hence you need to make sure that any program usimege
importsj ava. awt . | mage orj ava. awt . *.

The first line of thebegi n method of theSnowran class shows how to do this when given a
“gif” file (a particular format for holding images on-line):

6

CSC 202 Introduction to Programming Fall 2013

snowMVanPi ¢ = get | mage("snowran. gi f");

wheresnowManPi ¢ is an instance variable declared to have typmage. Downloading a “gif”

file can often be slow, so we usually will want to create an ietfagm the “gif” file at the beginning
of a program and save it until we need it. If you download “dilgs in the middle of your program,
you may cause a long delay while the computer brings it in fediite on a local disk or fileserver.

While objects of clas$ nage can hold a picture, they can’t do much else. We would like to
create an object that behaves like our other graphics aofed, Fr anedRect) so that it can be
displayed and moved around on our canvas.

The classVvi si bl el mage from the ObjectDraw library allows you to treat an image rolyg
as you would a rectangle. In fact, imagine/iasi bl el mage to be a rectangle with a picture
embedded in it. You can do most things you can do with a retgaregcept that there’s a neat
picture on top.

To create a newi si bl el mage:
new Vi si bl el mage(anl mage, xLocation, ylLocation, canvas);

For examplenew Vi si bl el mage(snowianPi ¢, 10, 10, canvas); would create an
object of typeVi si bl el mage from the image insnowiVanPi ¢ and place it orcanvas at
location (10,10), with size equal to the size of the imageittains.

If you associate a name with yoWf si bl el nage, you can manipulate it using some familiar
methods:

Vi si bl el mrage snowian;
And then later:
snowivan = new Vi si bl el mage(snowvanPi ¢, 10, 10, canvas);

snowivan. set W dt h(124) ;
snowian. set Hei ght (144) ;

Our original snow man image is large: 619x718 pixels, but reisk him down to a more reason-
able size.

What do you think happens if we say:
snowivan. set Col or (Col or. green) ;

Nothing! It's not an error, but nothing is done for you eith8ecause the picture already has its
own colors, it wouldn’'t make sense to change it to a solid cdkmilarly, the value returned by
snowvan. get Col or () is alwaysCol or . bl ack, no matter what colors are in the image!

7

CSC 202 Introduction to Programming Fall 2013

The rest of the code for tfBnownman class is just a variation on the earlier programs that akkbwe
us to drag around squares and T-shirts.

Another example of the use of\4 si bl el mage that also uses a loop, demonstrating that we
only need to usget | mage once, and can then create as maysi bl el rages as we want
with that onel nage.

See Example: SnowyNight

See the comment near the bottom of begi n method for more about how we ensure that we
can see all of the snowflakes while allowing them to be p&yt@scured on either side or the top
of the canvas.

More Advanced L oops

Now that we have seen how important loops are, and have gedatiith them in so many contexts,
we step back and discuss more complex loops.

See Example: Knitting
Here, each time the mouse is clicked, we knit a scarf.

If you look carefully at the pictures generated, you will seat the scarf is formed by overlapping
circles. Itis easiest to develop this by first writing codgémerate a row, then expand it to generate
the correct number of rows, in the correct positions.

To draw a row, we will have ahi | e loop. Each time through the loop we increase the value of
position as well as bump up our counter of the number of cokidrawn so famuntCol s.

That wasn’t too hard, but now we’'d like to create successivesr Each time we start a new row,
there are a number of things that we will need to take care of:

1. We need to reset the valuexfso that we start drawing at the beginning of the row rather
than where we left off.

2. We to increase the value pfso that rows won’t be drawn on top of each other.

3. We need to resetuntol s back to 0 so that it will keep the correct count when we restart
drawing a row.

4. We need to bump upunmRows each time through.

Now all we need to do is to repeatedly execute the code foridgaavrow by placing it inside an
enclosingwhi | e loop. This is our first example of mested loogstructure: a loop that executes
within a loop.

There is nothing mysterious about a nested loop. The inrgr i simply part of what the outer
loop does over and over.

