Computer Science 202

Introduction to Programming
The College of Saint Rose
Fall 2013

Topic Notes: Random Numbers

We have seen many cases where it is useful have computermprsgrhoose random numbers.
Programs that implement games might need to make decisamumly. This could involve
choosing a random direction for a character to move, an dateshuffling a deck of cards, or
to simulate the roll of a die.

We have (mostly) used two Objectdraw-provided utilitiegémerate random numbers this semester:
theRandonl nt Gener at or and theRandonDoubl eGener at or . Since those are specific to
Objectdraw, we want to use the more standard mechanismslémtisig random numbers provided

in standard Java.

We will see how this works by looking at an example:
See Example: RandomDemo

If we want to use random numbers in our program, we need tdrem®Randomobject that we
can ask to generate our random numbers. This first requia¢svihadd an appropriatarpor t
statement:

i mport java.util.Random
Then, we construct an instance:
Random r andontener at or = new Randon();

We can then get random values from &mndomobject by calling its methods includingext | nt
andnext Doubl e. See theRandonDenb example code for specifics.

A Random Number in a Game

We can use this capability in many ways. We will first implemgsimple guessing game. We will
have the computer pick a random number between 1 and 100hangsér gets to make repeated
guesses until the guess is correct. The program helps owting @ “higher” or “lower” response.

See Example: GuessingGame

Here, we just need to choose our random number for the anwwarhave a loop that reads guesses
until the correct number is entered.

CSC 202 Introduction to Programming Fall 2013

A Monte Carlo Method to Compute

Not only games make use of random numbers. There is a cladgaritms knows advionte
Carlo methods that use random numbers to help compute some result.

We will write programs that use a Monte Carlo method to estntiag value ofr.

The algorithm is fairly straightforward. We repeatedly oke(z, y) coordinate pairs, where the
andy values are in the range 0-ilgthe square with corners &1, 0) and(1, 1). For each pair, we
determine if its distance froit0, 0) is less than or equal to 1. If it is, it means that point liedwnit
the first quardant of a unit circle. Otherwise, it lies outsidf we have a truly random sample
of points, there should be an equal probability that theyeHaeen chosen at any location in our
square domain. The space within the circle occupie$the square of area 1.

So we can approximateby taking the number of random points found to be within thi¢ circle,
dividing that by the total number of points and multiplyiridpy 4!

We can see a simulation of this at:
On theweb: http://en.wikipedia.org/wiki/File:PBOK.gif at

Our Java program for this:
See Example: MonteCarloPi
And a version that makes use of Objectdraw:

See Example: MonteCarloPiVisual

