
Computer Science 202
Introduction to Programming
The College of Saint Rose
Fall 2013

Topic Notes: Random Numbers

We have seen many cases where it is useful have computer programs choose random numbers.
Programs that implement games might need to make decisions randomly. This could involve
choosing a random direction for a character to move, an orderfor shuffling a deck of cards, or
to simulate the roll of a die.

We have (mostly) used two Objectdraw-provided utilities togenerate random numbers this semester:
theRandomIntGenerator and theRandomDoubleGenerator. Since those are specific to
Objectdraw, we want to use the more standard mechanisms for selecting random numbers provided
in standard Java.

We will see how this works by looking at an example:

See Example: RandomDemo

If we want to use random numbers in our program, we need to construct aRandom object that we
can ask to generate our random numbers. This first requires that we add an appropriateimport
statement:

import java.util.Random;

Then, we construct an instance:

Random randomGenerator = new Random();

We can then get random values from ourRandom object by calling its methods includingnextInt
andnextDouble. See theRandomDemo example code for specifics.

A Random Number in a Game
We can use this capability in many ways. We will first implement a simple guessing game. We will
have the computer pick a random number between 1 and 100, and the user gets to make repeated
guesses until the guess is correct. The program helps out by giving a “higher” or “lower” response.

See Example: GuessingGame

Here, we just need to choose our random number for the answer,then have a loop that reads guesses
until the correct number is entered.



CSC 202 Introduction to Programming Fall 2013

A Monte Carlo Method to Compute π

Not only games make use of random numbers. There is a class of algorithms knows asMonte
Carlo methods that use random numbers to help compute some result.

We will write programs that use a Monte Carlo method to estimate the value ofπ.

The algorithm is fairly straightforward. We repeatedly choose(x, y) coordinate pairs, where thex
andy values are in the range 0-1 (i.e.the square with corners at(0, 0) and(1, 1). For each pair, we
determine if its distance from(0, 0) is less than or equal to 1. If it is, it means that point lies within
the first quardant of a unit circle. Otherwise, it lies outside. If we have a truly random sample
of points, there should be an equal probability that they have been chosen at any location in our
square domain. The space within the circle occupiesπ

4
of the square of area 1.

So we can approximateπ by taking the number of random points found to be within the unit circle,
dividing that by the total number of points and multiplying it by 4!

We can see a simulation of this at:

On the web: http://en.wikipedia.org/wiki/File:Pi30K.gif at

Our Java program for this:

See Example: MonteCarloPi

And a version that makes use of Objectdraw:

See Example: MonteCarloPiVisual

2


