
Computer Science 202
Introduction to Programming
The College of Saint Rose
Fall 2013

Topic Notes: Working with Numbers

We have already seen that computers often need to compute with numbers. In fact, when it comes
down to it, they do nothing but compute with numbers. So next,we consider some examples of
programs that work with numbers that don’t have anything to do with graphical objects.

Integer Values

We start simple. Let’s compute a rectangle’s area and perimeter.

See Example: Rectangle

There are a few things to note in this program.

First, we are working with numbers rather than words. This changes how we read the data from
the keyboard through ourScanner and the type of variable we need to declare to store that data.

For this example, we are requiring that the dimensions of therectangle are integer values.

As you know, the Java type we use to store an integer value is called an int . We declare and
initialize int variables namedwidth andheight to store the rectangle’s dimensions.

We next need to use a different method ofScanner to force it to look for an integer and return it
in as a Javaint instead of aString . That method is callednextInt .

Once we have our width and height, we need to compute the area and perimeter from them. For
this, we need to declare two moreint variables and perform some computation to compute their
values.

If you remember your elementary school geometry, you know that to compute the area of a rect-
angle, we multiply its width by its height. And to compute theperimeter we add up the lengths of
all sides, which in this case is twice the width plus twice theheight.

Java uses a notation to specify mathematical computations (a mathematicalexpression) that is
mostly familiar from math. As we can see from the statement that computesarea , we use the*
operator to specify multiplication.

So that statement instructs Java to multiply together theint value found in the variablewidth
by theint value found in the variableheight and store the product in theint variablearea .

The computation ofperimeter is a bit more complicated, but still pretty straightforward. We
see that addition is specified by+ and that we can use numbers in our expressions as well as values
stored in variables.

We do need to know in what order Java will perform the operations here. If it does2 * width ,
then adds 2 to that result, multiplying that resuly byheight , we will get the wrong answer.

CSC 202 Introduction to Programming Fall 2013

Fortunately, Java follows a strictorder of operations. In this case, we say that multiplication has
a higherprecedencethan addition, so Java will compute2 * width , then2 * height , then
add together those results.

We will look in more detail at order of operations as we encounter other mathematical operators in
subsequent examples.

Finally, we print out our results. We can see here that Java “does the right thing” when we con-
catenate string literals withint values.

Question: what happens if we type in something that’s not a valid int ?

Floating-point Values

Our next example is to perform a simple miles per gallon computation, which you will develop in
class.

When we divide twoint values using/ , the result is thequotient, and we throw away the remain-
der. If we want the remainder (and only the remainder), we canuse the%operator, often called the
“mod” operator as it performs modulo arithmetic.

Any division operator where both operands areint values, results in anint quotient. Ifeither
operand (or both) is already adouble , the results is adouble and the answer would include any
fractional part as a decimal.

Operator Precedence

We can specify complex arithmetic expressions using any combination of the following:

* multiplication
/ division
% remainder
+ addition
- subtraction

In a long expression such as

12 + 9 / 4 - 18 % 4 * 19

there are choices to be made in how to evalulate. Fortunately, Java makes these decisions and
makes it clear to us how it will evaluate such an expression.

1. unary negation operators are applied first, working left to right if there are multiple such
operations

2. multiplications, divisions, and remainders are computed, again left to right

2

CSC 202 Introduction to Programming Fall 2013

3. additions and subtractions are computed, left to right

So in the above expression, we first check for unary negations, and there are none.

Then, we do the multiplication, division, and remainder operations. Since these are all integer
values, the any division will be computed as an integral quotient.

So, the9 / 4 evaulates to2 first. Giving

12 + 2 - 18 % 4 * 19

Next,18 % 4 is evaluated to2 (the remainder when we divide 18 by 4). Giving:

12 + 2 - 2 * 19

One multiplication remains, so we compute the2 * 19 as38 , giving:

12 + 2 - 38

We are left with only additions and subtractions, which are evaulated left to right.12 + 2 be-
comes14 , leaving us:

14 - 38

and after the last subtraction, we have-24 for a final result.

The same rules apply if we have data in variables declared as either int or double values.

If we wish to override the default rules, just like in math, wecan place parentheses around any
lower-precedence operation that we wish to have performed before some higher-precedence oper-
ation, or if we want to change the order among same-precedence operations to do some further to
the right before some further to the left.

Logical Operations Example
As a further example of a Java application and a way to look at many of the uses of the logical
operators we studied recently, consider the following:

See Example: BooleanDemo

See the comments therein to see some details.

In particular, note the precedence of these operators:&& is evaluated before|| , much like multi-
plication is evaluated before addition in an arithmetic expression.

3

CSC 202 Introduction to Programming Fall 2013

Important note: you need to be very careful that you do specify these operators as&&and|| rather
than& and| . The single-character operators will perform a bitwise and(or) rather than a logical
and (or), which is not usually what you want..

The only other new item here in terms of a Java construct is theability to read in numeric data
from aScanner . We read in 3int values to our program by calling theScanner ’s nextInt
method. We can then use those numbers in a series of comparisons and other logical operations.

Numeric Data Types
A few more words are needed about numeric data.

Java includes four commonly used numeric types:

• int ,

• long ,

• float

• double

(There are others, but we won’t discuss them here.)

The typesint and long both represent integers. Typeint represents numbers between about
−2 ∗ 109 and2 ∗ 109, while long represents integers up to about1019.

Numbers written with decimal points are represented by the types float and double . The
type float only retains about 7 digits of precision, so we usually usedouble instead. Type
double has about 15 digits of precision and can represent numbers upto about10308 and as small
as10−308. These numbers can be written either simply with a decimal point, e.g.,4.735, or in
scientific notation,e.g., 5.146E+47, representing5.146 ∗ 1047.

Because of the way many of the Java libraries are written we will tend to use typeint for integers
anddouble for numbers with decimal points. Occasionally we will uselong when we need to
represent more digits with integers, but we will find no need to usefloat in this course.

Like int , the typedouble supports operations +, -, *, and /, but does not have an operation
corresponding to %. The results of applying these operatorsto double s is an answer which is
also adouble . Thus 3.0 / 2.0 = 1.5.

If an arithmetic operator has one operand with typeint and the other with typedouble , the
result will be adouble . Basically what happens is that Java recognizes that the two operands are
of different types (which it is not happy about), and thus attempts to make them be of the same
type. The simplest thing, from Java’s point of view, is to convert int s todouble s, as no loss of
precision results. As we saw earlier, if both operands are oftype int , the result will also be of
type int .

One must be careful in performing divisions to be aware of thetypes of the operands, as the results
may differ depending on their types.e.g., 3 / 2 = 1, while 3.0 / 2.0 = 3.0 / 2 = 3 / 2.0 = 1.5.

4

CSC 202 Introduction to Programming Fall 2013

Representing Data and Information
Before we go any further, it is necessary to think about how we can represent data and information
for use by a computer. We think of our computers dealing with numbers, text, pictures, sounds,
videos, and more. All of these things must be encoded in a way that a computer can gather, process,
output, and store it.

The fundamental idea here is that as a computer is really justa collection of electric circuits. Those
circuits transmit and store electrical signals that are either off or on. Those signals encode the only
two values a computer understands: the values 0 and 1.

Anything more complicated that we wish to use must be encodedusing a sequence of these 0’s and
1’s, which are known asbits, short forbinary digits.

The function of any computer can be boiled down to this: it takes a collection of bits, some of
which are data and some of which are instructions on what to doto that data, and performs those
instructions, producing a new collection of bits.

Binary Basics

Question: how high can you count on one finger?

That finger can either be up or down, so you can count 0, 1 and that’s it.

(Computer scientists always start counting at 0, so you should get used to that...)

So then... How high can you count on one hand/five fingers?

When kids count on their fingers, they can get up to 5. The numberis represented by the number
of fingers they have up.

But we have multiple ways to represent some of the numbers thisway: 1 0, 5 1’s, 10 2’s, 10 3’s, 5
4’s and 1 5.

We can do better. We have 32 different combinations of fingersup or down, so we can use them to
represent 32 different numbers.

Given that, how high can you count on ten fingers?

To make this work, we need to figure out which patterns of fingers up and down correspond to
which numbers.

To keep things manageable, we’ll assume we’re working with 4digits (hey, aren’t fingers called
digits too?) each of which can be a 0 or a 1. We should be able to represent 16 numbers. As
computer scientists, we’ll represent numbers from 0 to 15.

Our 16 patterns are base 2, orbinary, numbers. Again, we call the digitsbits.

Each bit may be 0 or 1. That’s all we have.

Just like in base 10 (ordecimal), where we have the 1’s (100) place, the 10’s (101) place, the 100’s

5

CSC 202 Introduction to Programming Fall 2013

(102) place, etc, here we have the 1’s (20), 2’s (21), 4’s (22), 8’s (23), etc.

As you might imagine, binary representations require a lot of bits as we start to represent larger
values. Since we will often find it convenient to think of our binary values in 4-bit chunks, we will
also tend to use base 16 (orhexadecimal).

Since we don’t have enough numbers to represent the 16 uniquedigits required, we use the numbers
0–9 for the values 0–9 but then the letters A–F to represent the values 10–15.

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

Any number can be used as the base, but the common ones are base2, base 8 (octal, 3 binary
digits), base 10, and base 16.

A byte (8 bits) of data can be written as a decimal number in therange 0 to 255, as 8 binary bits,
or as two hexadecimal symbols.

Two bytes of data: decimal in the range 0-65535, 16 bits, or 4 hex digits.

Decimal-Binary-Hex Conversions

Since we will encounter values in decimal, binary, and hexadecimal at various times, we should
think about how to convert among these representations.

We’ll first look at the easiest case: converting back and forth between binary and hex. Each hex
digit represents 4 bits and each group of 4 bits can be represented by a hex digit.

So to convert the hex value7A4D to binary, we convert each digit:

0111 1010 0100 1101

And to go back the other way, we can start with

6

CSC 202 Introduction to Programming Fall 2013

0100 1011 0000 0110

(conveniently written in groups of 4 bits) to obtain4B06 in hex.

Converting from binary or hex to decimal is also pretty straightforward. We just add up the values
represented by each digit. Start with a binary value:

01011011

This binary string is interpreted:

0× 2
7
+ 1× 2

6
+ 0× 2

5
+ 1× 2

4
+ 1× 2

3
+ 0× 2

2
+ 1× 2

1
+ 1× 2

0

which is 64+16+8+2+1 = 91 in decimal.

Notice that this isexactly the same way we interpret a decimal value. The value 2872 in decimal
is really:

2× 10
3
+ 8× 10

2
+ 7× 10

2
+ 2× 10

0

It’s a similar idea converting from hex. Here, we’ll look at the place values in base 16. Starting
with the hex value30C7:

3× 16
3
+ 0× 16

2
+ 12× 16

1
+ 7× 16

0

We’ll probably grab a calculator for this:

3× 4096 + 12× 16 + 7 = 12288 + 192 + 7 = 12487

The remaining conversions start from decimal. We’ll first convert decimal to binary. We assume
here that we are going to store our result in 8 bits, but the procedure can be extended to larger
values.

We will use 108 (decimal) as our value.

Let’s remember what each position in our 8-bit binary value represents:

The first bit is the number of27 = 128’s in the number.
The second bit is the number of26 = 64’s
The third bit is the number of25 = 32’s
The fourth bit is the number of24 = 16’s
The fifth bit is the number of23 = 8’s
The sixth bit is the number of22 = 4’s
The seventh bit is the number of21 = 2’s

7

CSC 202 Introduction to Programming Fall 2013

The eighth bit is the number of20 = 1’s

We work in order from left to right. If the number is greater than or equal to the value stored in
a position, we place a 1 in that position and subtract the value for that position from the number.
Otherwise, we place a 0 in that position.

So for our number 108, we start with the 128’s place. 108 is smaller, so we place a 0 there:

0???????

Next, we notice that 108 is larger than 64, so we place a 1 in the64’s place and subtract 64 from
our number. Subsequent steps will work with the number 44.

01??????

44 is greater than 32, so we have a 1 in the 32’s place, and are left with 12 to work with.

011?????

There are no 16’s in 12, so we put a 0.

0110????

There is an 8 in 12, so we place a 1 and subtract, leaving us with4.

01101???

And there is a 4, so we place a 1 in the 4’s and are left with 0.

011011??

The 0 remaining will not contain any 2’s or 1’s, so we will be placing 0’s in the final two positions.

01101100

And there’s our answer.

We will follow a similar procedure to this to convert decimalto hex, but it’s a little more tricky
since we’re dealing with powers of 16.

Here, we will assume that we want the answer in 4 hex digits, and we’ll start with the decimal
number 19,832.

8

CSC 202 Introduction to Programming Fall 2013

First, we need to remind ourselves what the place values are in hex:

163 = 4096

162 = 256

161 = 16

160 = 1

So we begin by figuring out how many 4096’s there are in 19,832.If we divide 19,832 by 4096,
we get 4, with a remainder of 3448. So our first hex digit will bea 4.

4???

And we continue working with that remainder, 3448. Note thatyou can also think about subtracting
4× 4096 = 16384 from our starting number to get that remainder.

How many 256’s are there in 3448? Well,3448

256
gives us 13, with a remainder of 120. This means

we need to use 13 as our second hex digit. Recall that the character we use to represent 13 is D.

4D??

Continuing on, we are left with 120 and we need to fill in the 16’splace. 120

16
gives 7 with a

remainder of 8. So we have our last two digits, and the hex representation of our number is

4D78

It’s All Binary

So we have seen how we can represent unsigned (i.e., non-negative) whole numbers in binary.
However, that is just one of many kinds of data that we will wish to store and process.

• Integers (including negative numbers): the representation is similar to what we use for un-
signed numbers. The usual representation is called2’s Complement, but the details are not
our concern.

• “Real” numbers with fractions/decimal points: there are many choices of how to represent
non-intergral values. The representations almost always used are calledfloating pointrepre-
sentations. Not all values can be represented exactly – approximations are needed.

• Characters: representing text. The two most common mappingsof binary values to charac-
ters:

– TheAmerican Standard Code for Information Interchange(ASCII) – provides a set of
one-byte representations for English characters, numerical digits, and common punc-
tuation.

See:http://en.wikipedia.org/wiki/ASCII

9

CSC 202 Introduction to Programming Fall 2013

– Unicode– introduced about 20 years ago – representations are 2 bytesper character,
allowing the inclusion of many international characters.

See:http://en.wikipedia.org/wiki/List_of_Unicode_characters

Text such as that in the document you are reading now is represented as a sequence of ASCII
or Unicode characters.

• Other media, such as sound, images, and video each have many possible representations.
When we refer to an “MP3” audio file, or a “JPEG” image, or an “MPEG” movie, we refer
to a file that follows a specific set of rules about what bit patterns correspond to the sound,
image, or video being represented.

• Computer instructions: both the data and instructions are stored as binary values in the
computer’s memory. We will look at this briefly in the next section.

Units for Measuring Data

While the fundamental unit of information is the bit, the smallest unit of data usually considered is
a group of 8 bits, called abyte. A byte is enough to store any one of 256 (=28) values. Typically, a
byte can represent a number or a letter or a special character(like a !). We will look more carefully
later in the semester at how bytes can be used to represent specific number or characters.

To represent anything beyond the simplest data, we will needto use lots and lots of bytes. A page
of text requires a few thousand bytes. So a several hundred-page book requires over a million
bytes.

This leads us to some prefixes to indicate numbers, many of which you have likely heard used in
this context:

Unit Abbrv. Size

Kilobyte KB 210 = 1024 bytes 2.4% more than103 (thousand)
Megabyte MB 220 bytes 4.8% more than106 (million)
Gigabyte GB 230 bytes 7.3% more than109 (billion)
Terabyte TB 240 bytes 9.9% more than1012 (trillion)
Petabyte PB 250 bytes 12.5% more than1015 (quadrillion)
Exabyte EB 260 bytes 15.2% more than1018 (quintillion)
Zettabyte ZB 270 bytes 18% more than1021 (sextillion)
Yottabyte YB 280 bytes 21% more than1024 (septillion)

See:http://www.unc.edu/ ˜ rowlett/units/large.html

Note that each entry in the table is 1000 times larger than theprevious. These are some incredibly
huge numbers!

These prefixes are used elsewhere in describing sizes in computer technology. A camera’s “megapix-
els” indicates how many millions of pixels are in the images that the camera can capture.

10

