Computer Science 202

Introduction to Programming
The College of Saint Rose
Fall 2013

Topic Notes: Working with Numbers

We have already seen that computers often need to compuit@witbers. In fact, when it comes
down to it, they do nothing but compute with numbers. So neetconsider some examples of
programs that work with numbers that don’t have anythingaevith graphical objects.

Integer Values

We start simple. Let’s compute a rectangle’s area and pe&ime
See Example: Rectangle

There are a few things to note in this program.

First, we are working with numbers rather than words. Th&nges how we read the data from
the keyboard through oiBcanner and the type of variable we need to declare to store that data.

For this example, we are requiring that the dimensions oféhtangle are integer values.

As you know, the Java type we use to store an integer valudledcanint . We declare and
initialize int variables namedidth andheight to store the rectangle’s dimensions.

We next need to use a different methodSeianner to force it to look for an integer and return it
in as a Javant instead of &tring . That method is calledextint

Once we have our width and height, we need to compute the atepaaimeter from them. For
this, we need to declare two mare variables and perform some computation to compute their
values.

If you remember your elementary school geometry, you knat tih compute the area of a rect-
angle, we multiply its width by its height. And to compute terimeter we add up the lengths of
all sides, which in this case is twice the width plus twice hlegght.

Java uses a notation to specify mathematical computatemsathematicaéxpressiop that is
mostly familiar from math. As we can see from the statemeait tomputesrea , we use the
operator to specify multiplication.

So that statement instructs Java to multiply togetheiirthe value found in the variablevidth
by theint value found in the variableeight and store the product in thit variablearea .

The computation operimeter is a bit more complicated, but still pretty straightforwaiye
see that addition is specified byand that we can use numbers in our expressions as well asvalue
stored in variables.

We do need to know in what order Java will perform the openativere. If it doe® * width
then adds 2 to that result, multiplying that resuly fgight , we will get the wrong answer.

CSC 202 Introduction to Programming Fall 2013

Fortunately, Java follows a striorder of operations In this case, we say that multiplication has
a higherprecedence¢han addition, so Java will compu® * width , then2 * height , then
add together those results.

We will look in more detail at order of operations as we end¢eunther mathematical operators in
subsequent examples.

Finally, we print out our results. We can see here that Jasasdhe right thing” when we con-
catenate string literals witimt values.

Question: what happens if we type in something that’s notid wat ?

Floating-point Values

Our next example is to perform a simple miles per gallon cawmmpan, which you will develop in
class.

When we divide twant values using , the result is theguotient and we throw away the remain-
der. If we want the remainder (and only the remainder), weusathe&ooperator, often called the
“mod” operator as it performs modulo arithmetic.

Any division operator where both operands are values, results in amt quotient. Ifeither
operand (or both) is alreadydmuble , the results is double and the answer would include any
fractional part as a decimal.

Operator Precedence

We can specify complex arithmetic expressions using anybauation of the following:

* | multiplication
/ division

%/| remainder
+ addition

- subtraction

In a long expression such as
12 +9/4-18 % 4 =+ 19

there are choices to be made in how to evalulate. Fortunatalya makes these decisions and
makes it clear to us how it will evaluate such an expression.

1. unary negation operators are applied first, working left to righthere are multiple such
operations

2. multiplications, divisions, and remainders are comguagain left to right

2

CSC 202 Introduction to Programming Fall 2013

3. additions and subtractions are computed, left to right

So in the above expression, we first check for unary negatantsthere are none.

Then, we do the multiplication, division, and remainder ragiens. Since these are all integer
values, the any division will be computed as an integral igmot

So, thed / 4 evaulates t@ first. Giving

12 + 2 - 18 % 4 * 19

Next,18 % 4is evaluated t@ (the remainder when we divide 18 by 4). Giving:
12 + 2 -2 * 19

One multiplication remains, so we compute ther 19 as38, giving:

12 + 2 - 38

We are left with only additions and subtractions, which arauéated left to right.12 + 2 be-
comesl4, leaving us:

14 - 38

and after the last subtraction, we ha2d for a final result.
The same rules apply if we have data in variables declaredhes mt or double values.

If we wish to override the default rules, just like in math, wen place parentheses around any
lower-precedence operation that we wish to have perforreéar® some higher-precedence oper-
ation, or if we want to change the order among same-precedgperations to do some further to
the right before some further to the left.

Logical Operations Example

As a further example of a Java application and a way to lookaatynof the uses of the logical
operators we studied recently, consider the following:

See Example: BooleanDemo
See the comments therein to see some details.

In particular, note the precedence of these opera&tss evaluated beforg , much like multi-
plication is evaluated before addition in an arithmeticresgion.

CSC 202 Introduction to Programming Fall 2013

Important note: you need to be very careful that you do spéodse operators @& and|| rather
than& and| . The single-character operators will perform a bitwise @)l rather than a logical
and (or), which is not usually what you want..

The only other new item here in terms of a Java construct iabdy to read in numeric data
from aScanner . We read in 3nt values to our program by calling ttf8&anner ’s nextint
method. We can then use those numbers in a series of commpmend other logical operations.

Numeric Data Types
A few more words are needed about numeric data.

Java includes four commonly used numeric types:

e int ,
e long ,
o float

e double

(There are others, but we won’t discuss them here.)

The typesnt andlong both represent integers. Typg represents numbers between about
—2 % 10 and2 * 10°, whilelong represents integers up to abaat®.

Numbers written with decimal points are represented by ypedfloat anddouble . The

typefloat only retains about 7 digits of precision, so we usually deable instead. Type
double has about 15 digits of precision and can represent numbesalput1 0°°® and as small
as107%%, These numbers can be written either simply with a decimaitpe.g.,4.735, or in

scientific notationg.g, 5.146E+47, representing.146 x 10%".

Because of the way many of the Java libraries are written widemdt to use typént for integers
anddouble for numbers with decimal points. Occasionally we will dseg when we need to
represent more digits with integers, but we will find no needgefloat in this course.

Like int , the typedouble supports operations +, -, *, and /, but does not have an aperat
corresponding to %. The results of applying these operatodeuble s is an answer which is
also adouble . Thus3.0/2.0=1.5.

If an arithmetic operator has one operand with type and the other with typeouble , the
result will be adouble . Basically what happens is that Java recognizes that the pexaads are
of different types (which it is not happy about), and thuemipts to make them be of the same
type. The simplest thing, from Java’s point of view, is towenint s todouble s, as no loss of
precision results. As we saw eatrlier, if both operands atgp int , the result will also be of
typeint .

One must be careful in performing divisions to be aware otypes of the operands, as the results
may differ depending on their types.g, 3/2 =1, while 3.0/2.0=3.0/2=3/2.0=1.5.

4

CSC 202 Introduction to Programming Fall 2013

Representing Data and Information

Before we go any further, it is necessary to think about how averepresent data and information

for use by a computer. We think of our computers dealing withmhers, text, pictures, sounds,

videos, and more. All of these things must be encoded in alatyatcomputer can gather, process,
output, and store it.

The fundamental idea here is that as a computer is reallajosliection of electric circuits. Those
circuits transmit and store electrical signals that afeegibff or on. Those signals encode the only
two values a computer understands: the values 0 and 1.

Anything more complicated that we wish to use must be encaded) a sequence of these 0’s and
1's, which are known abkits, short forbinary digits.

The function of any computer can be boiled down to this: ietk collection of bits, some of
which are data and some of which are instructions on what to deoat data, and performs those
instructions, producing a new collection of bits.

Binary Basics

Question: how high can you count on one finger?

That finger can either be up or down, so you can count O, 1 ar'd tha
(Computer scientists always start counting at 0, so you shgeti used to that...)
So then... How high can you count on one hand/five fingers?

When kids count on their fingers, they can get up to 5. The nuiisbepresented by the number
of fingers they have up.

But we have multiple ways to represent some of the numbersveys 1 0,5 1’s, 10 2's, 10 3's, 5
4'sand 15.

We can do better. We have 32 different combinations of fingprsr down, so we can use them to
represent 32 different numbers.

Given that, how high can you count on ten fingers?

To make this work, we need to figure out which patterns of fisggr and down correspond to
which numbers.

To keep things manageable, we’ll assume we’re working withgits (hey, aren’t fingers called
digits too?) each of which can be a 0 or a 1. We should be ablepiesent 16 numbers. As
computer scientists, we’ll represent numbers from 0 to 15.

Our 16 patterns are base 2,lmnary, numbers. Again, we call the digiksts.
Each bit may be 0 or 1. That's all we have.

Just like in base 10 (atecima), where we have the 1'4(°) place, the 10's1(0') place, the 100’s

5

CSC 202 Introduction to Programming Fall 2013

(10%) place, etc, here we have the 128 2's (2!), 4's (22), 8's (2°), etc.

As you might imagine, binary representations require a idiits as we start to represent larger
values. Since we will often find it convenient to think of oumdry values in 4-bit chunks, we will
also tend to use base 16 (mexadecimal

Since we don’t have enough numbers to represent the 16 udigjierequired, we use the numbers
0-9 for the values 0-9 but then the letters A—F to representdlues 10-15.

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

©Ooo~NOUlh~WNEO

TmMmoO®>»

Any number can be used as the base, but the common ones arg, bzese 8 dctal, 3 binary
digits), base 10, and base 16.

A byte (8 bits) of data can be written as a decimal number irrdinge O to 255, as 8 binary bits,
or as two hexadecimal symbols.

Two bytes of data: decimal in the range 0-65535, 16 bits, addigits.

Decimal-Binary-Hex Conversions

Since we will encounter values in decimal, binary, and hegadal at various times, we should
think about how to convert among these representations.

We'll first look at the easiest case: converting back anchfbetween binary and hex. Each hex
digit represents 4 bits and each group of 4 bits can be repextby a hex digit.

So to convert the hex valuBA4D to binary, we convert each digit:
0111 1010 0100 1101

And to go back the other way, we can start with

6

CSC 202 Introduction to Programming Fall 2013

0100 1011 0000 0110

(conveniently written in groups of 4 bits) to obtadB06 in hex.

Converting from binary or hex to decimal is also pretty stnéiigrward. We just add up the values
represented by each digit. Start with a binary value:

01011011

This binary string is interpreted:

O0x2T+1x204+0x2°+1x2+1x22+0x22+1x204+1x20

which is 64+16+8+2+1 =91 in decimal.

Notice that this isexactly the same way we interpret a decimal value. The value 2872aimdé
is really:

2% 10°+8x 102+ 7 x 10% +2 x 10°

It's a similar idea converting from hex. Here, we’ll look &iet place values in base 16. Starting
with the hex valu0C7:

3x1624+0x 162+ 12 x 16" +7 x 16°

We’'ll probably grab a calculator for this:

3x4096 412 x 16 + 7 = 12288 4 192 + 7 = 12487

The remaining conversions start from decimal. We’'ll firshwert decimal to binary. We assume
here that we are going to store our result in 8 bits, but theqaore can be extended to larger
values.

We will use 108 (decimal) as our value.
Let's remember what each position in our 8-bit binary vakgresents:

The first bit is the number of” = 128’s in the number.
The second bit is the number 2f = 64’s

The third bit is the number af® = 32’s

The fourth bit is the number of* = 16’s

The fifth bit is the number of? = 8’s

The sixth bit is the number &f = 4's

The seventh bit is the number 2f = 2’s

CSC 202 Introduction to Programming Fall 2013

The eighth bit is the number @f = 1's

We work in order from left to right. If the number is greateathor equal to the value stored in
a position, we place a 1 in that position and subtract theevduthat position from the number.
Otherwise, we place a 0 in that position.

So for our number 108, we start with the 128’s place. 108 idlsmao we place a O there:

Next, we notice that 108 is larger than 64, so we place a 1 ib4'eeplace and subtract 64 from
our number. Subsequent steps will work with the number 44.

There are no 16’'sin 12, so we puta 0.

0110?77?77

Thereis an 8in 12, so we place a 1 and subtract, leaving uswith

01101727

And there is a 4, so we place a 1 in the 4's and are left with 0.

01101177

The 0 remaining will not contain any 2's or 1's, so we will bagihg O’s in the final two positions.
01101100

And there’s our answer.

We will follow a similar procedure to this to convert decintalhex, but it's a little more tricky
since we're dealing with powers of 16.

Here, we will assume that we want the answer in 4 hex digitd, ve&l start with the decimal
number 19,832.

CSC 202 Introduction to Programming Fall 2013

First, we need to remind ourselves what the place valuendrex:

16% = 4096
16% = 256
16! =16
16°=1

So we begin by figuring out how many 4096’s there are in 19,88®e divide 19,832 by 4096,
we get 4, with a remainder of 3448. So our first hex digit willebé.

4777

And we continue working with that remainder, 3448. Note tfat can also think about subtracting
4 x 4096 = 16384 from our starting number to get that remainder.

How many 256’s are there in 34487 We?a%s gives us 13, with a remainder of 120. This means
we need to use 13 as our second hex digit. Recall that the ¢bavee use to represent 13 is D.

4D?7?

Continuing on, we are left with 120 and we need to fill in the l@iace. % gives 7 with a
remainder of 8. So we have our last two digits, and the hexesgmtation of our number is

4D78

It's All Binary

So we have seen how we can represent unsigneg rfon-negative) whole numbers in binary.
However, that is just one of many kinds of data that we willlwis store and process.

e Integers (including negative numbers): the represemasicimilar to what we use for un-
signed numbers. The usual representation is c&le€omplementbut the details are not
our concern.

e “Real” numbers with fractions/decimal points: there are ynamoices of how to represent
non-intergral values. The representations almost alwagd are callefloating pointrepre-
sentations. Not all values can be represented exactly -oxippations are needed.

e Characters: representing text. The two most common mappingsary values to charac-
ters:

— The American Standard Code for Information Interchar{@&Cll) — provides a set of
one-byte representations for English characters, nualatigits, and common punc-
tuation.

See:http://en.wikipedia.org/wiki/ASCII

9

CSC 202 Introduction to Programming Fall 2013

— Unicode- introduced about 20 years ago — representations are 2 pgteharacter,
allowing the inclusion of many international characters.

See:http://en.wikipedia.org/wiki/List_of Unicode_characters

Text such as that in the document you are reading now is repies as a sequence of ASCII
or Unicode characters.

e Other media, such as sound, images, and video each have rossiplp representations.
When we refer to an “MP3” audio file, or a “JPEG” image, or an “MFHEnovie, we refer
to a file that follows a specific set of rules about what bitgrais correspond to the sound,
image, or video being represented.

e Computer instructions: both the data and instructions ameedtas binary values in the
computer’'s memory. We will look at this briefly in the next 8en.

Units for Measuring Data

While the fundamental unit of information is the bit, the skastl unit of data usually considered is
a group of 8 bits, called hyte A byte is enough to store any one of 25&@{}values. Typically, a
byte can represent a number or a letter or a special chatbksea!). We will look more carefully
later in the semester at how bytes can be used to represeificpamber or characters.

To represent anything beyond the simplest data, we will teede lots and lots of bytes. A page
of text requires a few thousand bytes. So a several hundigd-pook requires over a million
bytes.

This leads us to some prefixes to indicate numbers, many afhwau have likely heard used in
this context:

| Unit [Abbrv. | Size \ |
Kilobyte | KB | 2!9 = 1024 bytes| 2.4% more than(0® (thousand)
Megabyte| MB 22V bytes 4.8% more thari0° (million)
Gigabyte| GB 230 bytes 7.3% more thari0” (billion)
Terabyte| TB 210 bytes 9.9% more than0'? (trillion)
Petabyte| PB 2°Y bytes 12.5% more than0'® (quadrillion)
Exabyte | EB 200 bytes 15.2% more than(0*® (quintillion)
Zettabyte| ZB 270 bytes 18% more thari0?! (sextillion)
Yottabyte | YB 2% bytes 21% more tharl0** (septillion)
See:http://www.unc.edu/ ~ rowlett/units/large.html

Note that each entry in the table is 1000 times larger thapigous. These are some incredibly
huge numbers!

These prefixes are used elsewhere in describing sizes inutermpchnology. A camera’s “megapix-
els” indicates how many millions of pixels are in the imadest the camera can capture.

10

