
Computer Science 202
Introduction to Programming
The College of Saint Rose
Fall 2013

Topic Notes: Methods

As programmers, we often find ourselves writing the same or similar code over and over. We
learned that we can place code inside of loop constructs to have the same code executed multiple
times. There are other situations where we wish to execute some of the same code repeatedly but
not all in the same place in our program’s execution.

Consider a simple program, which we could have written monthsago, that prints the lyrics toBaa
Baa Black Sheep.

See Example: BaaBaaBad

Here, we see that we have 4 printouts repeated – these are the refrain of the song. To accomplish
this, we either need some copying and pasting or we need to re-type some lines.

A loop wouldn’t help us here, as the lines we need to repeat areseparated by 4 other lines that do
not repeat.

Fortunately, all modern programming languages, includingJava, allow us to group sets of state-
ments together into units that can be executed “on demand” byinserting other statements. These
constructs go by many names:functions, methods, procedures, subroutines or subprograms.

Java calls themmethods.

We have been using methods all semester.begin, onMousePress (and friends), andmain are
examples of methods we have been writing. We have been using methods written by others when
we send messages to our graphical objects, generate random numbers, or retrieve a value from a
Scanner, for example.

Here is our example, using a method to group our repeated statements.

See Example: BaaBaaBetter

In this case, our method for printing the refrain looks a lot like the method we know well:main.
Other than the name (which in this case is “refrain”) and the fact that we don’t have the
“String args[]” in the parentheses, it is very similar to themain methods we have been
writing all semester.

Just likemain, the body of therefrain method consists of a collection of Java statements that
will execute when therefrain method is called.

We can also see in themain method where wecall therefrain method. We simply put its
name, followed by();

Again, this is somewhat similar to what we have been doing allsemester to call methods:

CSC 202 Introduction to Programming Fall 2013

System.out.println("Hi!");
keyboard.nextInt();
JOptionPane.showMessageDialog(null,"Hi!");
ball.move(dx, dy);

except that there is no name or names before a period before the method name. We can omit it
here, because that means we want to call a method in the same class as the method which is making
the call.

We could have made our method calls torefrain look like the ones we’ve been using all along:

BaaBaaBetter.refrain();

Note that we used a method in this case primarily because it allowed us to reduce the amount of
repeated code. This is in itself a worthy goal. If we had misspelled one of the words in the refrain,
we can change it in one place and it will be corrected in both printings of the refrain.

However, there is another advantage in readability. By having 2 calls to therefrain method in
our main method, it is more clear what we are doing there. With this in mind, we can consider
moving parts of ourmain method into a separate method just for clarity.

See Example: BaaBaa2Methods

Passing Parameters to Methods
Some methods work like the ones in the previous examples: they simply perform the same exact
task every time they are called.

However, many others will perform functionality that depends on some input. The way we get
input to a method is by passingparameters (also known asarguments) to a method.

We have done this with the methods we have been using all along. What doesSystem.out.println
print? Whatever we pass as its parameter.

We can pass parameters to methods we write as well.

See Example: NumberInfo

We accomplish this by introducing a variable to our method that is initialized to whatever value is
passed in the parentheses when we call the method.

We have been relying on this mechanism in all of our mouse event handlers all semester. Some
code deep inside of Objectdraw has been figuring our where themouse is pressed on our canvas,
constructing aLocation containing those coordinates, and sending it to out mouse event handler
methods. Since we say “Location point” in the parentheses when we define those methods,
we are telling Java we’d like to call thatLocation by the namepoint in our method.

Back to graphical examples later, but for now a slightly more complex example of a Java applica-
tion that uses a method:

2

CSC 202 Introduction to Programming Fall 2013

See Example: HoursWorked

Here, we pass aString parameter to our method. It contains the contents of one lineof an input
file, and the method is responsible for breaking down that line into its components, which are an
employee id number, an employee name, followed by some number of floating point numbers that
represent hours worked by day.

Here, we see another use of aScanner. If we pass aString as the parameter to aScanner’s
constructor, we can use theScanner methods to read individual words or numbers.

We could alternately move the reading of each line of the file into our method as well.

See Example: HoursWorked2

Now, the parameter to our method needs to be theScanner, so the method will be able to call
theScanner’s nextLine method.

Passing Multiple Parameters

Nothing stops us from passing multiple parameters to a method or passing information of any data
type.

See Example: SumOfSquares

Here, we create a method that accepts two parameters.

Order matters when passing parameters. The first parameter in the call will match the first param-
eter in the method signature, the second with the second, andso on. In this example, we’d get
the same result, but that is not generally the case. This would matter, for a simple example, if we
changed to a “difference of squares” here.

Returning Information from Methods
So far, each method we have written in this group of examples has the same start to its signature:

public static void

We will now change that last word to go from a “void” method – one which does not return any
information, to one which does.

We have used methods that return values all semester, but we have not written any ourselves.
Consider some of the following methods:

• Integer.parseInt

• JOptionPane.showInputDialog

• nextDouble of aScanner object

3

CSC 202 Introduction to Programming Fall 2013

• nextInt of aRandom object

• contains of any of our graphics primitives

Each of these results in Java performing some task, and giving back to the caller some information.

We can write these kinds of methods as well.

Our first example will be a method that adds up all of the integers between 1 and a given number,
and returns the sum.

So a call such as

int sum = sumNumbersTo(10);

should leave a value of 55 insum.

Such a method and some examples of how to call:

See Example: Sum1ToN

A few quick notes about this example:

• Since our method computes an integer value, we replacevoid in its method signature with
int.

• The value we compute that we wish to have our method send back to its caller is specified in
areturn statement.

• Any code in the method after areturn statement will not be executed, so is not allowed.
An exception might be if we have areturn inside of a conditional statement (like anif
or switch).

We can see immediately that we have some similar advantages to ourvoid methods. Themain
method becomes shorter, and we avoid potentially having to repeat sections of code when we want
to compute such a sum in multiple places in our program.

In this case, there is an additional advantage. Some of you may remember that there is a much
easier (computationally speaking) algorithm for computing this sum. Rather than looping through
all of the numbers and adding each to a running total, we couldapply this formula:

n∑

i=1

i =
n(n+ 1)

2

This is a more efficient operation, at least for larger numbers. Here, we do one addition, one
multiplication, and one division. (Moreover, the divisionis a division by 2 - something computers
are very good at.)

4

CSC 202 Introduction to Programming Fall 2013

So if we discover this formula and want to change our program to use it, we need only change our
method. We don’t need to change anything inmain!

See Example: Sum1ToNBetter

We next consider an example with a method that takes 4 parameters and returns adouble value
– one to compute the distance between 2 points in the plane.

See Example: Distance

The method itself is not that complicated, but the main program uses it several times, so the exam-
ple looks more complex than it really is.

See the comments in the code for more.

A Utility Method for Input

We now will revisit a topic from several weeks ago, using methods to provide a better solution.
Recall that many of our programs that ask for input have had sections of code that look similar to
this:

int val;
do {

System.out.print("Enter a value between 1 and 10: ");
val = keyboard.nextInt();
if ((val < 1) || (val > 10)) {

System.out.println("Value out of range, please try again.");
}

while ((val < 1) || (val > 10));

We can write a method that can accomplish this, and make it generic enough to be useful in a
variety of situations.

We will do this by modifying a program that computes a weighted average from a grading break-
down:

See Example: GradingBreakdown

This program works, but as you can see, themain method is quite lengthy and includes a signif-
icant amount of repeated code. Let’s focus on that part of thecode that prompts for an reads in
category grades and does error checking on those inputs:

double labPointsEarned = 0.0;
do {

System.out.print("How many lab points did you earn (total available:
LAB_POINTS + ")? ");

labPointsEarned = keyboard.nextDouble();
if ((labPointsEarned < 0.0) || (labPointsEarned > LAB_POINTS)) {

5

CSC 202 Introduction to Programming Fall 2013

System.out.println("Response must be in the range 0.0 to " +
}

} while ((labPointsEarned < 0.0) || (labPointsEarned > LAB_POINTS));

There are three items here that differ from one instance of this code block to the next:

• the name of the variable in which to place the result (labPointsEarned for this instance)

• the description of the category to be included in the prompt ("lab" in this case)

• the upper limit on the range of legal inputs (LAB POINTS in this case)

If we are going to encapsulate this code block in a method, we will need to transfer these bits of
information back and forth between themain method and the new method.

The description and the upper limit are both known tomain and will be needed by the new method,
so these will become parameters.

The “points earned” we are reading in will be read from the keyboard by the new method, but will
be needed back inmain to accumulate the overall average. This will become a returnvalue.

Finally, our new method will need to know about the keyboardScanner that main will still
create. So theScanner should also be passed as a parameter.

This gives us the result:

See Example: GradingBreakdownBetter

And finally, one graphical example, to show that we can do thiswith our ObjectDraw programs as
well.

See Example: DrawFlags

Next, we will look at another program that uses nested loops.We will draw 48-star American flags.

Most of what we see in this program is familiar.

The methodsdrawStripes anddrawStars are called from inside theonMousePressmethod.
They are not designed to be accessible from outside the class. They are designed only to be useful
in breaking down the method into easier to understand pieces. drawStripes, is especially use-
ful because it allows us to avoid duplicating code. Notice that it is used twice inside the method.
Once to draw short stripes, and once to draw long stripes. Because we provide different parameters
to it each time, it produces different results. If we did not use this private method, we would have
to repeat the code in the method twice, once for each collection of values of the parameters.

The main difference here between the methods we saw in Java applications and this one is that the
method signature does not have thestatic directive included. The key idea here is that methods
that do not havestatic specified can access your instance variables, ones that arestatic
cannot. So why would we ever write astatic method? Because non-static methods cannot
be called fromstatic methods, and for Java applications,main must always be declared as
static.

6

