Computer Science 202

Introduction to Programming
The College of Saint Rose
Fall 2013

Topic Notes: Methods

As programmers, we often find ourselves writing the same roilai code over and over. We
learned that we can place code inside of loop constructsve the same code executed multiple
times. There are other situations where we wish to execue 5 the same code repeatedly but
not all in the same place in our program’s execution.

Consider a simple program, which we could have written moagits that prints the lyrics tBaa
Baa Black Sheep.

See Example: BaaBaaBad

Here, we see that we have 4 printouts repeated — these arefithi@ 10f the song. To accomplish
this, we either need some copying and pasting or we needtypessome lines.

A loop wouldn't help us here, as the lines we need to repeategarated by 4 other lines that do
not repeat.

Fortunately, all modern programming languages, includiaga, allow us to group sets of state-
ments together into units that can be executed “on demandid®yrting other statements. These
constructs go by many namdanctions, methods, procedures, subroutines or subprograms.

Java calls themmethods.

We have been using methods all semegtegi n, onMbusePr ess (and friends), andai n are
examples of methods we have been writing. We have been ugttgoas written by others when
we send messages to our graphical objects, generate randuobers, or retrieve a value from a
Scanner , for example.

Here is our example, using a method to group our repeateshstats.
See Example: BaaBaaBetter

In this case, our method for printing the refrain looks a ke the method we know wellhrai n.
Other than the name (which in this case r®f rai n”) and the fact that we don’t have the
“String args[]”in the parentheses, it is very similar to th@&i n methods we have been
writing all semester.

Just likemai n, the body of the ef r ai n method consists of a collection of Java statements that
will execute when the ef r ai n method is called.

We can also see in theai n method where weall ther ef r ai n method. We simply put its
name, followed by() ;

Again, this is somewhat similar to what we have been doingatiester to call methods:

CSC 202 Introduction to Programming Fall 2013

Systemout.printin("H!'");

keyboard. nextlInt ();

JOpt i onPane. showessageDi al og(nul |, "Hi !");
bal | . move(dx, dy);

except that there is no name or names before a period beferaethod name. We can omit it
here, because that means we want to call a method in the sasseasithe method which is making
the call.

We could have made our method callg ®f r ai n look like the ones we've been using all along:
BaaBaaBetter.refrain();

Note that we used a method in this case primarily becaustwed us to reduce the amount of
repeated code. This is in itself a worthy goal. If we had nedisp one of the words in the refrain,
we can change it in one place and it will be corrected in boithtipgs of the refrain.

However, there is another advantage in readability. By hipficalls to the ef r ai n method in
our mai n method, it is more clear what we are doing there. With this indpwe can consider
moving parts of ourrai n method into a separate method just for clarity.

See Example: BaaBaa2Methods

Passing Parametersto Methods

Some methods work like the ones in the previous exampley:singply perform the same exact
task every time they are called.

However, many others will perform functionality that dederon some input. The way we get
input to a method is by passimpgrameters (also known agsrguments) to a method.

We have done this with the methods we have been using all aWhgt doesSyst em out . pri ntl n
print? Whatever we pass as its parameter.

We can pass parameters to methods we write as well.
See Example: Numberinfo

We accomplish this by introducing a variable to our methad thinitialized to whatever value is
passed in the parentheses when we call the method.

We have been relying on this mechanism in all of our mousetdvamdlers all semester. Some
code deep inside of Objectdraw has been figuring our wherethese is pressed on our canvas,
constructing d.ocat i on containing those coordinates, and sending it to out mouset éandler
methods. Since we say.bcati on poi nt”in the parentheses when we define those methods,
we are telling Java we’d like to call thabcat i on by the namegoi nt in our method.

Back to graphical examples later, but for now a slightly mareplex example of a Java applica-
tion that uses a method:

CSC 202 Introduction to Programming Fall 2013

See Example: HoursWorked

Here, we pass &t r i ng parameter to our method. It contains the contents of oneofia@ input
file, and the method is responsible for breaking down that ilmio its components, which are an
employee id number, an employee name, followed by some nuaififleating point numbers that
represent hours worked by day.

Here, we see another use obaanner . If we pass &t r i ng as the parameter togcanner’s
constructor, we can use tiBeanner methods to read individual words or numbers.

We could alternately move the reading of each line of theffile our method as well.
See Example: HoursWorked2

Now, the parameter to our method needs to beShanner , so the method will be able to call
theScanner s next Li ne method.

Passing M ultiple Parameters

Nothing stops us from passing multiple parameters to a ndathpassing information of any data
type.

See Example: SumOfSquares
Here, we create a method that accepts two parameters.

Order matters when passing parameters. The first parametes call will match the first param-
eter in the method signature, the second with the seconds@ma. In this example, we'd get
the same result, but that is not generally the case. Thisdvoalter, for a simple example, if we
changed to a “difference of squares” here.

Returning I nformation from M ethods

So far, each method we have written in this group of exampssline same start to its signature:
public static void

We will now change that last word to go from a “void” method -eomhich does not return any
information, to one which does.

We have used methods that return values all semester, butveerfot written any ourselves.
Consider some of the following methods:

e | nt eger. parsel nt

e JOpti onPane. show nput Di al og

e next Doubl e of aScanner object

CSC 202 Introduction to Programming Fall 2013

e next | nt of aRandomobject

e cont ai ns of any of our graphics primitives

Each of these results in Java performing some task, andggbaok to the caller some information.
We can write these kinds of methods as well.

Our first example will be a method that adds up all of the intedpetween 1 and a given number,
and returns the sum.

So a call such as
int sum = sunNunbersTo(10);

should leave a value of 55 Bum
Such a method and some examples of how to call:
See Example: Sum1ToN

A few quick notes about this example:

e Since our method computes an integer value, we replacel in its method signature with
i nt.

e The value we compute that we wish to have our method send batskdaller is specified in
ar et ur n statement.

e Any code in the method afterraet ur n statement will not be executed, so is not allowed.
An exception might be if we haveraet ur n inside of a conditional statement (like af
orsw t ch).

We can see immediately that we have some similar advantages voi d methods. Therai n
method becomes shorter, and we avoid potentially havingdeat sections of code when we want
to compute such a sum in multiple places in our program.

In this case, there is an additional advantage. Some of yguremaember that there is a much
easier (computationally speaking) algorithm for compgitims sum. Rather than looping through
all of the numbers and adding each to a running total, we capidy this formula:

ani _n(n+1)
=1 2
This is a more efficient operation, at least for larger nurebdtere, we do one addition, one
multiplication, and one division. (Moreover, the divisima division by 2 - something computers
are very good at.)

CSC 202 Introduction to Programming Fall 2013

So if we discover this formula and want to change our prog@uose it, we need only change our
method. We don’t need to change anythingrai n!

See Example: Suml1ToNBetter

We next consider an example with a method that takes 4 pagasretd returns doubl e value
— one to compute the distance between 2 points in the plane.

See Example: Distance

The method itself is not that complicated, but the main proguses it several times, so the exam-
ple looks more complex than it really is.

See the comments in the code for more.

A Utility Method for Input

We now will revisit a topic from several weeks ago, using roethto provide a better solution.
Recall that many of our programs that ask for input have hatiosescof code that look similar to
this:

int val;

do {
Systemout.print("Enter a value between 1 and 10: ");
val = keyboard. nextint();

if ((val < 1) || (val > 10)) {
System out. println("Value out of range, please try again.");

}
while ((val < 1) || (val > 10));

We can write a method that can accomplish this, and make egrgeenough to be useful in a
variety of situations.

We will do this by modifying a program that computes a weighdgerage from a grading break-
down:

See Example: GradingBreakdown

This program works, but as you can see, itta¢ n method is quite lengthy and includes a signif-
icant amount of repeated code. Let’s focus on that part ottue that prompts for an reads in
category grades and does error checking on those inputs:

doubl e | abPoi nt searned = 0. 0;
do {
System out. print("How many | ab points did you earn (total
LAB PO NTS + ")? ");
| abPoi nt sEar ned = keyboar d. next Doubl e() ;

avai |

if ((labPointskEarned < 0.0) || (!abPointsEarned > LAB PO NTS)) -

5

CSC 202 Introduction to Programming Fall 2013

System out. printl n("Response nust be in the range 0.0 to "

}
} while ((labPointsEarned < 0.0) || (labPointsEarned > LAB PO NTS))

There are three items here that differ from one instanceistitde block to the next:

e the name of the variable in which to place the redudti{Poi nt sEar ned for this instance)
¢ the description of the category to be included in the prothpap" in this case)

e the upper limit on the range of legal inputsAB_PO NTS in this case)

If we are going to encapsulate this code block in a method, Weneed to transfer these bits of
information back and forth between thai n method and the new method.

The description and the upper limit are both knowm#o n and will be needed by the new method,
so these will become parameters.

The “points earned” we are reading in will be read from thebdaayd by the new method, but will
be needed back imai n to accumulate the overall average. This will become a retalue.

Finally, our new method will need to know about the keybo8chnner thatmai n will still
create. So th&canner should also be passed as a parameter.

This gives us the result:
See Example: GradingBreakdownBetter

And finally, one graphical example, to show that we can dowlitis our ObjectDraw programs as
well.

See Example: DrawFlags
Next, we will look at another program that uses nested lodyeswill draw 48-star American flags.
Most of what we see in this program is familiar.

The methodslr awSt r i pes anddr awSt ar s are called from inside thenMbusePr ess method.
They are not designed to be accessible from outside the dlasy are designed only to be useful
in breaking down the method into easier to understand pielresnSt r i pes, is especially use-
ful because it allows us to avoid duplicating code. Notica this used twice inside the method.
Once to draw short stripes, and once to draw long stripes.UBecae provide different parameters
to it each time, it produces different results. If we did negthis private method, we would have
to repeat the code in the method twice, once for each callecti values of the parameters.

The main difference here between the methods we saw in Jaliaaons and this one is that the
method signature does not have #iteat i ¢ directive included. The key idea here is that methods
that do not havest at i ¢ specified can access your instance variables, ones thait arel ¢
cannot. So why would we ever writesd at i ¢ method? Because nat-at i ¢ methods cannot
be called fromst at i ¢ methods, and for Java applicatiomsai n must always be declared as
static.

