
Computer Science 202
Introduction to Programming
The College of Saint Rose
Fall 2012

Topic Notes: Random Numbers

It is often useful have computer programs choose random numbers. Programs that implement
games might need to make decisions randomly. This could involve choosing a random direction
for a character to move, an order for shuffling a deck of cards,or to simulate the roll of a die.

We can generate random values in both Visual Logic and Java.

We will see how this works by looking at an example:

See Example: RandomDemo

In Visual Logic, we can use therandom function to compute a random number anywhere we
would normally use a variable or number. If we write

random(10)

Visual Logic will randomly generate a number between 0 and 9.

If instead we want a number in the range 1 to 10:

random(10)+1

In Java, (as usual) there are a few more steps. If we want to userandom numbers in our program,
we need to construct aRandom object that we can ask to generate our random numbers. This first
requires that we add an appropriateimport statement:

import java.util.Random;

Then in ourmain method, we construct an instance:

Random randomGenerator = new Random();

We can then get random values from ourRandom object by calling its methods includingnextInt
andnextDouble. See the RandomDemo example code for specifics.

A Random Number in a Game



CSC 202 Introduction to Programming Fall 2012

We can use this capability in many ways. We will first implement a simple guessing game. We will
have the computer pick a random number between 1 and 100, and the user gets to make repeated
guesses until the guess is correct. The program helps out by giving a “higher” or “lower” response.

See Example: GuessingGame

Here, we just need to choose our random number for the answer,then have a loop that reads guesses
until the correct number is entered.

A Monte Carlo Method to Compute π

Not only games make use of random numbers. There is a class of algorithms knows asMonte
Carlo methods that use random numbers to help compute some result.

We will write programs that use a Monte Carlo method to estimate the value ofπ.

The algorithm is fairly straightforward. We repeatedly choose(x, y) coordinate pairs, where thex
andy values are in the range 0-1 (i.e.the square with corners at(0, 0) and(1, 1). For each pair, we
determine if its distance from(0, 0) is less than or equal to 1. If it is, it means that point lies within
the first quardant of a unit circle. Otherwise, it lies outside. If we have a truly random sample
of points, there should be an equal probability that they have been chosen at any location in our
square domain. The space within the circle occupiesπ

4
of the square of area 1.

So we can approximateπ by taking the number of random points found to be within the unit circle,
dividing that by the total number of points and multiplying it by 4!

We can see a simulation of this at:

On the web: http://en.wikipedia.org/wiki/File:Pi30K.gif at

Our Visual Logic and Java programs for this:

See Example: MonteCarloPi

There is a small complication in Visual Logic in that we cannot simply ask for a random number
in the 0.0 to 1.0 range directly. We have to choose a random integer value with some range and
divide by the size of the range.

When we move to Java, we can simply call ourRandom’s nextDouble method to get numbers
in the 0.0 to 1.0.

2


