
Computer Science 202
Introduction to Programming
The College of Saint Rose
Fall 2012

Topic Notes: Conditional Execution

All of our programs so far have had one thing in common: they are entirelysequential. The
statements in ourmain methods all execute, one after another, in the order they areencountered
in our program.

While this is useful in many cases, we would like to move beyondthat and have our programs
start tomake choices. We would like to be able to check for a certain condition. If the condition is
“true” we would like to do one thing, if it’s “false” we would do something else or possibly nothing
at all.

Thinking of every day algorithms, this is something we do allthe time.

• If I am still hungry, I will go for seconds.

• If it is a weekday, I will set my alarm to get up for class. Otherwise, I will sleep as long as I
would like.

• If the dough is too watery, add more flour.

• If the student’s score is at least 95% on the spelling test, put a sticker at the top.

Visual Logic’s If Condition
We will begin our exploration of this idea with Visual Logic,using the “If Condition”.

We will develop a small program that asks what year you were born, and prints out a message that
depends on that.

In the “If Condition” in Visual Logic, we can specify aboolean condition – something that eval-
uates to either true or false – and depending on that result, the execution will continue on one of
two paths.

Our program will print out your age, and an extra message if you were born before 1995 (when
Java was born).

Java’sif Statement
Java has a construct that does the same thing. We will look at asimplified version first: one that
either does something or not.

The basic form is

CSC 202 Introduction to Programming Fall 2012

if (<boolean condition>) {
statement1;
statement2;
...

}

where<boolean condition> is some Java expression that evaluates totrue or false. If
it evaluates totrue, the statements inside the curly braces following the condition are executed.
Otherwise, they are skipped.

Let’s use this to develop our program.

See Example: OlderThanJava

There are many things that can be used to construct a boolean expression, but we will start with
the standard relational operators and use them to compare numeric values.

Expression When is ittrue?
x > y whenx is greater thany
x < y whenx is less thany
x >= y whenx is greater than or equal toy
x <= y whenx is less than or equal toy
x == y whenx is equal toy
x != y whenx is not equal toy

Java’sif-else Construct

Theif statement we saw above allows us to execute a statement or group of statements if the
condition is true. Often, we want to execute one set of statements if the condition is true and
another set if the condition is false.

In Visual Logic, we can do this by placing flowchart symbols onthe “false” side of the If Condition
symbol as well as on the “true” side.

We will expand ourOlderThanJava program to do this. Here, we print a different message if
the person is younger than or the same age as Java (in additionto the previous message when the
person is older).

In Java, we can use theif-else construct.

if (<boolean condition>) {
statement1A;
statement1B;
...

}
else {

2

CSC 202 Introduction to Programming Fall 2012

statement2A;
statement2B;
...

}

where<boolean condition> is some Java expression that evaluates totrue or false.

See Example: OlderYoungerThanJava

Another Example, Adding in JOptionPane I/O
We will next consider another example ofif statements in Java, but with the added bonus of using
a different mechanism for input and output.

The problem: we wish to write a program that calculates the number of full payments needed for
a no-interest loan where we are given a loan amount and desired monthly payment. This number
is reported. If additional funds are due after those full payments are made, that is reported as well.

See Example: NoInterestLoan

The comments in that example describe in detail three new items:

• The use ofJOptionPane.showInputDialog to bring up a dialog box with a message
and a text box for input, and returning the text typed into thebox as aString.

• The use of Java’sInteger.parseInt method to convert aString to anint, which is
necessitated here because theJOptionPane.showInputDialog only returnsString
values.

• The use of Java’sJOptionPane.showMessageDialog to bring up a dialog box to
display some program output.

Nested Conditionals
There is nothing stopping us from putting conditionals inside of conditionals. Consider this
decision-making problem of whether it’s a good idea to cancel classes tomorrow so we can go
skiing.

Suppose we are only willing to go skiing if the temperature will be no higher than 50 and there is
at least 6 inches of snow on the ground in the mountains.

We will first build a Visual Logic flowchart for this. We can askeither of the questions (temperature
or snow cover) first, and if that response doesn’t disqualifythe day as a ski day, only then will we
ask the other. Let’s ask temperature first, then if the temperature is cool enough, ask about the
snow cover.

3

CSC 202 Introduction to Programming Fall 2012

All we really need to understand here is that any flowchart element, including an If Condition, can
be placed on one of the branches of the If Condition.

See Example: ShouldWeSki

When we convert this to Java, we will place prompt that reads inand the entire condition that
checks for a deep enough snow cover within the “if part” (the part that happens if the temperature
is below 50).

Java’sif-else-if Construct
Our next example is a program that asks for the user’s name andhometown, then displays a mes-
sage that indicates whether the length of (number of characters in) the name is more than, less than,
or the same as the length of the town.

Again, we can construct a Visual Logic flowchart. We know mostof what we need to do this, the
exception being how we can compute the length of a string.

In Visual Logic, we can compute the length of a string (if it’scalleds) with

length(s)

We can then use the number returned as part of our condition todecide which branch of an If
Condition we should take.

Note that there are 3 possible cases: the name is shorter, thetown is shorter, or they are the same
length. Since an If Condition only has two choices, we will need more than one If Condition.

See Example: NameAndTown

For this conversion to Java, we could do a nestedif as we did for the previous example. However,
there is a variant on theif-else construct that allows us to check multiple conditions in a
sequence and (optionally) perform an “otherwise” case at the end.

It is sometimes called the “if else-if” construct, and lookslike this:

if (cond1) {
// cond1 true stuff

}
else if (cond2) {

// cond2 true stuff (only can happen if cond1 false)
}
else if (cond3) {

// cond3 true stuff (only can happen if cond1 and cond2 false)
}
...
else if (condn) {

4

CSC 202 Introduction to Programming Fall 2012

// condn true stuff (only can happen if all previous conds false)
}
else {

// "otherwise" -- will happen if all previous conds false
}

In our program we can see that construct where we first check ifthe name is shorter. If not, we
check if the name is longer. If neither was true, then they must have been equal in length, so the
final else is executed.

Also notice that we also have a mechanism in Java to compute the length of aString.

So far, we have made use of only a fraction of the capabilitiesof Java’sString class. All we
have done is to declare variables capable of holdingString references, assignString values
to them, and use those values in constructing outputs.

There are many methods provided by Java’sStrings and we will see a lot of them in coming
weeks. For now, we just need the one that can give us aString’s length.

If we have aString in a variables, we can compute its length with

s.length();

With this available to us, we can complete the example program.

Boolean data and boolean expressions
Our discussion of conditional execution needs to include a look at more complex boolean expres-
sions.

The common boolean expression operators are

• arithmetic comparisons:== to test for equality,!= to test for inequality, and the inequality
tests:<, <=, >, and>=.

• &&, which is theand operator. Its result istrue if both of its operands evaluates totrue.

• ||, which is theor operator. Its result istrue if either of its operands evaluates totrue.

• ! – which evaluates to the boolean opposite of its only operand.

We will encounter all of these in meaningful examples going forward, but for now, we can see
many of them in action in this example.

See Example: BooleanDemo

See the comments therein to see some details.

5

CSC 202 Introduction to Programming Fall 2012

In particular, note the precedence of these operators:&& is evaluated before||, much like multi-
plication is evaluated before addition in an arithmetic expression.

Important note: you need to be very careful that you do specify these operators as&& and|| rather
than& and|. The single-character operators will perform a bitwise and(or) rather than a logical
and (or), which is not usually what you want..

Armed with these constructs and a few more we will see in this example, we can now tackle a more
complicated problem.

See Example: MassPikeTolls

The comment at the top of the Java program describes the problem.

This is a complex enough decision problem that we should firstsketch out a flowchart in Visual
Logic.

We will need to use the boolean operators in Visual Logic, which are a bit different:

• arithmetic comparisons:= to test for equality,<> to test for inequality, and the inequality
tests:<, <=, >, and>=.

• AND, which is theand operator. Its result istrue if both of its operands evaluates totrue.

• OR, which is theor operator. Its result istrue if either of its operands evaluates totrue.

• ! – which evaluates to the boolean opposite of its only operand.

We end up with 3 possible outputs:

• There is a full toll if both entry and exit were at an interchange numbered 6 or higher, or if
we are driving a truck.

• There is no toll if both entry and exit were at an interchange numbered 6 or lower, and we
are not driving a truck.

• There is a toll on only part of the trip (east of interchange 6)if we entered or exited on one
side of interchange 6

See the comments throughout the Java program for more information. Note in particular these new
Java methods and constructs:

• The use ofSystem.exit(1) to terminate the program when an error occurs (in this case,
an invalid input was encountered).

• The use of a more complex form ofJOptionPage.showMessageDialog to more
clearly indicate an error message as opposed to an informational message like those we
have used previously.

6

CSC 202 Introduction to Programming Fall 2012

• The use of theString’s equals method to compareString values. We cannot use==
to compareStrings for equality in most cases. Java will accept it, but it does not have the
meaning we wish it to have in this context. More on this later in the semester.

The switch Statement
A common pattern in programming is to have a series of statements of the form:

if (x == 0) {
// do stuff for x == 0

}
else if (x == 1) {

// do stuff for x == 1
}
else if (x == 2) {

// do stuff for x == 2
}
...
else if (x == 8) {

// do stuff for x == 8
}
else {

// do stuff when x is none of the above
}

Let’s look at an example where this occurs. Consider a programthat tells you which Computer
Science faculty member you can find in each of the offices in theAlbertus 400 suite.

See Example: CSOfficesIfElse

Java (and many other languages) provide a special constructwe can use in situations like this that
can be a bit more convenient.

switch (x) {
case 0:

// do stuff for x == 0
break;

case 1:
// do stuff for x == 1
break;

case 2:
// do stuff for x == 2
break;

...

7

CSC 202 Introduction to Programming Fall 2012

case 8:
// do stuff for x == 8
break;

default:
// do stuff when x is none of the above
break;

}

This works only when the comparison if for equality and we areusing one of these data types:
char, byte, short, or int. So far, we have only usedint variables from among this group.
Note that it does not work fordouble or String values.

Also note that eachcase is ended by a special statement:break;

If we rewrite the example to use aswitch statement, it would look like this:

See Example: CSOfficesSwitch

If we mistakenly leave out abreak; statement, Java will “fall through” to the nextcase. Some-
times this is handy and just what we want, but the vast majority of the time, we want abreak; at
the end of casecase.

One situation where this does come in handy is when we want to do the same thing for multiple
cases:

See Example: LittlePrimes

Formatting Output
Our next example has more conditionals, but also shows how wecan nicely format output that
contains floating point numbers.

See Example: Payroll

The key points to notice from this example:

• The use of named constants for numbers that are unlikely to change from one execution of
the program to the next.

• The declaration of variables that will be assigned inside theif-else before theif-else.
If they were defined within the body of theif parts and/orelse part, those variables would
exist onlywithin those blocks of code.

• The declaration, construction, and use ofDecimalFormat objects to format our floating-
point output. See the text for more examples. The essentials:

– Like Scanner andJOptionPane, we need to tell Java if we intend to use aDecimalFormat
with

8

CSC 202 Introduction to Programming Fall 2012

import java.text.DecimalFormat;

– Before we make use of one, we need to declare a variable of typeDecimalFormat
and construct an instance. The parameter we pass to thisconstructor is the number of
digits and any other characters we want. There are two examples in this proram, more
in the text.

– When we want to print out a floating point value as formatted by one of theseDecimalFormat
objects, we pass the floating point value to the object’sformat method. This returns
aString representation of that value using the specified format.

9

