Computer Science 202

Introduction to Programming
The College of Saint Rose
Fall 2012

Topic Notes: Computer Structures

We begin the meat of the course by considering the fundansesftaomputer structures. We will
examine the components of modern computers and learn abahle components work together
to allow the computer to perform its tasks.

We will not attempt a formal definition of the tereomputer but we will consider the major
functions of a computer:

1. togatherinput data from users or devices,

2. toprocesdata into information,

3. tooutputdata and information, and

4. tostoredata and information.

The termsdata andinformationare often used interchangeably, but we should be more precis
here.

e Data (the plural form of “datum”) are unorganized facts and figre&ithout an obvious
meaning.

¢ Informationis obtained by processing and orgainzing data in a mearingiy

A good example of this: your personal data such as your nadwress, phone number, photo-
graph, and so on are fairly useless on their own, but if yoamze them to associate your name
with your address and phone number to be able to answer aauékeé “What is John Smith’s
phone number?” we have created information.

We will spend much of our time early this semester looking encarefully at how computers
gather, process, output, and store data and information.

Representing Data and Information

Before we go any further, it is necessary to think about how averepresent data and information

for use by a computer. We think of our computers dealing withhbers, text, pictures, sounds,

videos, and more. All of these things must be encoded in alatyatcomputer can gather, process,
output, and store it.

CSC 202 Introduction to Programming Fall 2012

The fundamental idea here is that as a computer is reallyajosliection of electric circuits. Those
circuits transmit and store electrical signals that ateeeioff or on. Those signals encode the only
two values a computer understands: the values 0 and 1.

Anything more complicated that we wish to use must be encadet) a sequence of these 0’s and
1's, which are known abits, short forbinary digits.

The function of any computer can be boiled down to this: ietak collection of bits, some of
which are data and some of which are instructions on what to doat data, and performs those
instructions, producing a new collection of bits.

Binary Basics

Question: how high can you count on one finger?

That finger can either be up or down, so you can count 0, 1 and tha
(Computer scientists always start counting at 0, so you shgeti used to that...)
So then... How high can you count on one hand/five fingers?

When kids count on their fingers, they can get up to 5. The numshepresented by the number
of fingers they have up.

But we have multiple ways to represent some of the numbersveys 1 0, 51’s, 10 2's, 10 3’s, 5
4'sand 15.

We can do better. We have 32 different combinations of fingprsr down, so we can use them to
represent 32 different numbers.

Given that, how high can you count on ten fingers?

To make this work, we need to figure out which patterns of fisggr and down correspond to
which numbers.

To keep things manageable, we’ll assume we’re working withgits (hey, aren’t fingers called
digits too?) each of which can be a 0 or a 1. We should be ablep@sent 16 numbers. As
computer scientists, we’ll represent numbers from 0 to 15.

Our 16 patterns are base 2,lmnary, numbers. Again, we call the digiksts.
Each bit may be 0 or 1. That's all we have.

Just like in base 10 (atecima), where we have the 1'4(°) place, the 10's1(0") place, the 100's
(10%) place, etc, here we have the 128), 2's (21), 4's (22), 8's (2°), etc.

As you might imagine, binary representations require aidiits as we start to represent larger
values. Since we will often find it convenient to think of ouméry values in 4-bit chunks, we will
also tend to use base 16 (mexadecimal

Since we don’t have enough numbers to represent the 16 udigjterequired, we use the numbers
0-9 for the values 0-9 but then the letters A—F to representdlues 10-15.

CSC 202 Introduction to Programming Fall 2012

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

O©Ooo~NOOUIlhWNEO

mTmMmoO >

Any number can be used as the base, but the common ones ar2, bzesse 8 dctal, 3 binary
digits), base 10, and base 16.

A byte (8 bits) of data can be written as a decimal number irrdinge O to 255, as 8 binary bits,
or as two hexadecimal symbols.

Two bytes of data: decimal in the range 0-65535, 16 bits, addigits.

Decimal-Binary-Hex Conversions

Since we will encounter values in decimal, binary, and hegadal at various times, we should
think about how to convert among these representations.

We'll first look at the easiest case: converting back anchfogtween binary and hex. Each hex
digit represents 4 bits and each group of 4 bits can be repexsey a hex digit.

So to convert the hex valuBA4D to binary, we convert each digit:
0111 1010 0100 1101

And to go back the other way, we can start with

0100 1011 0000 0110

(conveniently written in groups of 4 bits) to obtadB06 in hex.

Converting from binary or hex to decimal is also pretty stnéigrward. We just add up the values
represented by each digit. Start with a binary value:

CSC 202 Introduction to Programming Fall 2012

01011011
This binary string is interpreted:

O0x2"+1x294+0x224+1x22+1x24+0x22+1x2"+1x2°

which is 64+16+8+2+1 = 91 in decimal.

Notice that this ixactly the same way we interpret a decimal value. The value 2872amaé
is really:

2x10%+8 x 102+ 7 x 10> + 2 x 10°

It's a similar idea converting from hex. Here, we'll look &iet place values in base 16. Starting
with the hex valu80C7:

3x16%4+0x 16% + 12 x 16* + 7 x 16°

We'll probably grab a calculator for this:

3x4096 412 x 16 + 7 = 12288 4 192 + 7 = 12487

The remaining conversions start from decimal. We'll firshwert decimal to binary. We assume
here that we are going to store our result in 8 bits, but thequore can be extended to larger
values.

We will use 108 (decimal) as our value.
Let's remember what each position in our 8-bit binary vakresents:

The first bit is the number of” = 128’s in the number.
The second bit is the number 2f = 64’s

The third bit is the number af® = 32’s

The fourth bit is the number of* = 16’s

The fifth bit is the number of? = 8’s

The sixth bit is the number af = 4's

The seventh bit is the number 2f = 2’s

The eighth bit is the number @f = 1's

We work in order from left to right. If the number is greateathor equal to the value stored in
a position, we place a 1 in that position and subtract theevduthat position from the number.
Otherwise, we place a 0 in that position.

So for our number 108, we start with the 128’s place. 108 idlsmao we place a 0 there:

CSC 202 Introduction to Programming Fall 2012

Next, we notice that 108 is larger than 64, so we place a 1 ib4eplace and subtract 64 from
our number. Subsequent steps will work with the number 44.

There are no 16’sin 12, so we put a 0.

0110?72?27

Thereisan 8in 12, so we place a 1 and subtract, leaving usiwith

0110172727

And there is a 4, so we place a 1 in the 4’'s and are left with O.

01101177

The 0 remaining will not contain any 2’s or 1's, so we will bagihg O’s in the final two positions.
01101100

And there’s our answer.

We will follow a similar procedure to this to convert decintalhex, but it's a little more tricky
since we're dealing with powers of 16.

Here, we will assume that we want the answer in 4 hex digitd, ve®ll start with the decimal
number 19,832.

First, we need to remind ourselves what the place valuendrex:

16% = 4096
16% = 256
16 =16
16°=1

So we begin by figuring out how many 4096’s there are in 19,88®e divide 19,832 by 4096,
we get 4, with a remainder of 3448. So our first hex digit willebé.

5

CSC 202 Introduction to Programming Fall 2012

4777

And we continue working with that remainder, 3448. Note tfmat can also think about subtracting
4 x 4096 = 16384 from our starting number to get that remainder.

How many 256’s are there in 34487 We?%s gives us 13, with a remainder of 120. This means
we need to use 13 as our second hex digit. Recall that the ¢bavee use to represent 13 is D.

4D?7?

Continuing on, we are left with 120 and we need to fill in the l@iace. % gives 7 with a

remainder of 8. So we have our last two digits, and the hexesgmtation of our number is

4D78

It's All Binary

So we have seen how we can represent unsigned rfon-negative) whole numbers in binary.
However, that is just one of many kinds of data that we willlwis store and process.

e Integers (including negative numbers): the represemasicimilar to what we use for un-
signed numbers. The usual representation is c&le€omplementbut the details are not
our concern.

¢ “Real”’ numbers with fractions/decimal points: there are ynelmoices of how to represent
non-intergral values. The representations almost alwagd are callefloating pointrepre-
sentations. Not all values can be represented exactly -oxippations are needed.

e Characters: representing text. The two most common mappingsary values to charac-
ters:

— The American Standard Code for Information Intercharf@&Cll) — provides a set of
one-byte representations for English characters, nualatigits, and common punc-
tuation.

See:http://en.wikipedia.org/wiki/ASCII

— Unicode- introduced about 20 years ago — representations are 2 pogteharacter,
allowing the inclusion of many international characters.
See:http://en.wikipedia.org/wiki/List_of _Unicode_characters

Text such as that in the document you are reading now is rexpiexs as a sequence of ASCII
or Unicode characters.

CSC 202 Introduction to Programming Fall 2012

e Other media, such as sound, images, and video each have rossiplp representations.
When we refer to an “MP3” audio file, or a “JPEG” image, or an “MFHEnovie, we refer
to a file that follows a specific set of rules about what bitgrais correspond to the sound,
image, or video being represented.

e Computer instructions: both the data and instructions amedtas binary values in the
computer’s memory. We will look at this briefly in the next 8en.

Units for Measuring Data

While the fundamental unit of information is the bit, the skastl unit of data usually considered is
a group of 8 bits, called byte A byte is enough to store any one of 25&{rvalues. Typically, a
byte can represent a number or a letter or a special chafbkses!). We will look more carefully
later in the semester at how bytes can be used to represeificpamber or characters.

To represent anything beyond the simplest data, we will neede lots and lots of bytes. A page
of text requires a few thousand bytes. So a several hundigd-pook requires over a million
bytes.

This leads us to some prefixes to indicate numbers, many afhwou have likely heard used in
this context:

| Unit [Abbrv. | Size \ |
Kilobyte | KB | 2! =1024 bytes| 2.4% more than(0? (thousand)
Megabyte| MB 22V bytes 4.8% more tha0°® (million)
Gigabyte| GB 23V bytes 7.3% more thar0” (billion)
Terabyte| TB 210 bytes 9.9% more thari0'2 (trillion)
Petabyte| PB 2°V bytes 12.5% more than0 (quadrillion)
Exabyte | EB 200 bytes 15.2% more than0'® (quintillion)
Zettabyte| ZB 270 bytes 18% more thari0*! (sextillion)
Yottabyte| YB 289 bytes 21% more thani0?* (septillion)
See:http://www.unc.edu/ ~ rowlett/units/large.html

Note that each entry in the table is 1000 times larger thapite@ous. These are some incredibly
huge numbers!

These prefixes are used elsewhere in describing sizes inutermpchnology. A camera’s “megapix-
els” indicates how many millions of pixels are in the imadest the camera can capture.

Hardware vs. Software

You have certainly heard the terrhardwareandsoftware All of the physical components of the
computer are considered hardware. The programs that usmatteare to perform specific tasks
make up the software.

CSC 202 Introduction to Programming Fall 2012

We will discuss software in more detail later. For now, nbi&t there are two major categories of
software:

e Application softwareconsists of the programs you use all the time, like an emahtla
web browser, and a word processor.

e System softwarer theoperating systeris the interface between the hardware and software.
This is what allows you to use the same (or at least very sijralaplications on very differ-
ent underlying hardware.

Hardware Components

We will break hardware into four categories for nawput devicesoutput devicegrocessors and
memory andpersistent storage

An additional category ohetwork deviceswhich allow computers to communicate with each
other, will be a major topic for us a bit later.

Input Devices

Some input devices are very common, others are more sgeclali

e keyboard enter typed data and commands

e mouseor touchpad select items on a screen

e microphoneinput audio

e scanner capture digital images of physical media

¢ digital cameraor webcam capture capture digital images or video

e stylus a “pen” to “write” on a screen

Output Devices

There is also a wide variety of output devices that you may ay not be familiar with.

e monitor. video output (previously CRTs, now LCDs)
e printer: produce physical output
e speakersaudio output

e projectors really just another type of monitor

8

CSC 202 Introduction to Programming Fall 2012

Processors and Memory

The brains of your computer — the part that can perform catmrls and store the data used by
those calculations — are the processor and memory.

If you open up a desktop or laptop computer, you will find awirtoard which has attached to
it many other smaller circuit boards and other devices. ®ikemotherboard It contains slots
to install acentral processing ungCPU),random access memo(RAM) and expansion devices
such as sound, video, modem, or network cards. There willzsexternal ports, where devices
can be connected.

We begin with RAM, sometimes calledain memoryr primary storage Modern computers have
hundreds of megabytes or up to a few gigabytes of RAM. Datadtor RAM can be accessed
quickly for use in computation. However, it isvalatile storage, so its contents remain intact only
as long as the computer remains on.

The processor is what performs the computations by exegatsequence ahstructions which
are simple commands like “add these two numbers” or “compla@ee two numbers”. These
commands as well as the data on which they operate are stofRANM. A modern processor is
capable of performing billions of these simple operaticashesecond.

Measuring Speed
But.. how fast is fast, when discussing RAM and processors?

The basic unit is aycle— this is how long it takes for one instruction to be executgdhe
processor, or a value to be stored or retrieved by the menystgrs.

We want to measure the numberayfcles per secondnd the unit here isertz abbreviated “Hz".

A speed of 10 Hz would indicate that there are 10 cycles pargkaneaning each cycle takes 0.1
seconds.

Even the earliest computers were capable of a few thousarelsgyer second. Today’s computers
do billions.

Our prefixes come into play here again. For many years, psocepeeds were measured in
megahertfMHz) and today most are measuredjigahertz(GHz).

So let's consider a processor that operates at 1 GHz. Thiasneean perform one billion cycles
per second, and hence performs each cycle in one billionghseicond. That is an unimaginably
short amount of time. There is@ock keeping the operations of the computer synchronized that
switches from a 0 value to a 1 value a billion times per second.

Just as we saw the prefixes for large multiples of a valueetaer some common prefixes used to
represent fractional parts, in this case, of seconds.

CSC 202 Introduction to Programming Fall 2012

| Unit | Abbrv. | Length |
second s 10Y (one)
millisecond | ms | 10~? (one thousandth
microsecond us 10~° (one millionth)
nanosecond ns 10~ (one billionth)
picosecond| ps 102 (one trillionth)

See: the SI multiples section lattp://en.wikipedia.org/wiki/Second

While these infinitesimal time scales are very hard to congmdhwe can think about some things
we think are fast and compare them to the speed of a computer.

Consider typing at a keyboard. The world’s fastest typistsisput around 100 words per minute.
Given an average word size of 6 characters (5 letters plua@$how many characters per second
would these typists be producing?

Contrast this with the number of instructions a 1 GHz proceissprocessing. In the time it takes
for a very speedy human to type a character, how many inginghas the processor executed?

The “Hertz” rating for a processor is an important factor @tetmining how much computational
power a computer has. We will consider other factors laténénsemester.

Persistent Storage

Since RAM is a volatile storage, any data that needs to bedstehen the computer is power off,
or any data that is too large to fit in RAM, must be stored pegsistent storagdevice.

There are a number of technologies, varying in size and ttadtprovide persisent storage.

e magnetic disksbits of data are stored in densely-packed magnetic pastmh a surface

— floppy disksbecoming a legacy technology due to small storage cap@tityiB)

— hard disks most common current technology, capacities now exceed fof Both
internal and external drives

e optical discs compact discs (CDs), digital video discs (DVDs), Blu-raycdiscapacities
from around 700 MB for a CD to 25 GB for a Blu-ray

¢ flash storagekey/thumb drives, memory cards — now can store 64 GB or more

Device Connection Interfaces

Next, we consider how devices (@eripherald can be connected to a computer. You have likely
seen how many different devices connect. For the novicgjghist a matter of matching the right
cord to the connection that fits the cord. But we will spend abitme considering the common
interfaces on modern computers and which devices typicakythem.

10

CSC 202 Introduction to Programming Fall 2012

A peripheral is (typically) connected via a cord that endthveiconnector The connector has
a shape that matches withpart on the computer. Usually, the connector has some number and
configuration of metal pins, and these pins make contactmwiétching pin slots on the port.

It is through these connections that the peripheral deunckthe computer communicate using
electrical signals. At most one value can be transmittedamh @in at a time, so any meaningful
amount of data will need to be transmitteelquentially forming abitstream

The speed of an interconnect is determined by how quickly liftstream can be transmitted, its
transfer rate

e data transfer portstwo-way data communication

— most common todayuniversal serial bugUSB)
— legacy: the traditionaderial portandparallel port
— fast: FireWire

e network ports

— Ethernet port local area network connection
— modem portphone line (also becoming legacy)

e audio/video ports

— video graphics arrafVGA): connect older monitors

— S-video(super video): PC/TV interconnect

— digital video interfacgDVI): digital LCD connection

— High-Definition Multimedia Interfac€HDMI): home theater

The transfer rate varies widely among these devices. Thesa@asured ibits per secondbps).

Older serial ports operated at 115 Kbps and parallel poriklaaperate at 500 Kbps. The original
USB ports operated at 12 Mbps and USB 2.0 increased that t&ib®8. USB 3.0 will operate at
4.8 Gbhps.

FireWire devices can operate at 400 Mbps or 800 Mbps.

See:http://www.coolnerds.com/Newbies/Ports/ports.htm

Architecture Basics
Modern computers use tlv®nNeumann architecture

Idea: a set of instructions and a loop:

1. Fetch an instruction

11

CSC 202 Introduction to Programming Fall 2012

2. Update next instruction location
3. Decode the instruction
4. Execute the instruction

5. GOTO 1

Basic picture of the system:

scratchpad

Microsequencer control

(BRAIN!) store
Y (microcode)

arithmetic
logic
unit

The ALU knows how to do some set of arithmetic and logical apiens on values in the scratch-
pad.

Usually the scratchpad is made up of a setegisters

The micro-sequencer “brain” controls what the ALU readsfthe scratchpad and where it might
put results, and when.

We will not be concerned about the details of the micro-segee
This is what makes up theentral processing unit (CPU)

We can expand this idea a bit to include memory and other dsvic

12

CSC 202 Introduction to Programming Fall 2012

scratchpad
CPU
Chi
Microsequencer €ontrol P
(BRAIN!) _store
(microcode)
ALU:
arithmetic
logic
? unit
lots of pins Memory
Address Bus
Data Bus
[other devices...

mouse
The CPU interacts with memory and other devicedoses
These buses are just wires that carry the electrical sighalsepresent the data.
If you dig deep down into any modern computer you use, it limlen to this basic process.
All of the instructions, data, and control signals come déwhinary numbers.

For example, if we happened to be using a MIPS processor inauputer, and the CPU encoun-
ters this instruction

00000010001100100100000000100000

the processor will know that it means to take the numbersdanmegisters namefisl and$s2,
add them together, and put the result into a register natied

Somehow, the fact that this is @dd instruction and which registers are involved is encoded in
this particular 32-bit value.

13

CSC 202 Introduction to Programming Fall 2012

Take a computer organization/architecture course to lahof the details.

14

