
Computer Science 202
Introduction to Programming
The College of Saint Rose
Fall 2012

Topic Notes: Computer Structures

We begin the meat of the course by considering the fundamentals of computer structures. We will
examine the components of modern computers and learn about how the components work together
to allow the computer to perform its tasks.

We will not attempt a formal definition of the termcomputer, but we will consider the major
functions of a computer:

1. togatherinput data from users or devices,

2. toprocessdata into information,

3. tooutputdata and information, and

4. tostoredata and information.

The termsdata and informationare often used interchangeably, but we should be more precise
here.

• Data (the plural form of “datum”) are unorganized facts and figures, without an obvious
meaning.

• Informationis obtained by processing and orgainzing data in a meaningful way.

A good example of this: your personal data such as your name, address, phone number, photo-
graph, and so on are fairly useless on their own, but if you organize them to associate your name
with your address and phone number to be able to answer a question like “What is John Smith’s
phone number?” we have created information.

We will spend much of our time early this semester looking more carefully at how computers
gather, process, output, and store data and information.

Representing Data and Information
Before we go any further, it is necessary to think about how we can represent data and information
for use by a computer. We think of our computers dealing with numbers, text, pictures, sounds,
videos, and more. All of these things must be encoded in a way that a computer can gather, process,
output, and store it.

CSC 202 Introduction to Programming Fall 2012

The fundamental idea here is that as a computer is really justa collection of electric circuits. Those
circuits transmit and store electrical signals that are either off or on. Those signals encode the only
two values a computer understands: the values 0 and 1.

Anything more complicated that we wish to use must be encodedusing a sequence of these 0’s and
1’s, which are known asbits, short forbinary digits.

The function of any computer can be boiled down to this: it takes a collection of bits, some of
which are data and some of which are instructions on what to doto that data, and performs those
instructions, producing a new collection of bits.

Binary Basics

Question: how high can you count on one finger?

That finger can either be up or down, so you can count 0, 1 and that’s it.

(Computer scientists always start counting at 0, so you should get used to that...)

So then... How high can you count on one hand/five fingers?

When kids count on their fingers, they can get up to 5. The numberis represented by the number
of fingers they have up.

But we have multiple ways to represent some of the numbers thisway: 1 0, 5 1’s, 10 2’s, 10 3’s, 5
4’s and 1 5.

We can do better. We have 32 different combinations of fingersup or down, so we can use them to
represent 32 different numbers.

Given that, how high can you count on ten fingers?

To make this work, we need to figure out which patterns of fingers up and down correspond to
which numbers.

To keep things manageable, we’ll assume we’re working with 4digits (hey, aren’t fingers called
digits too?) each of which can be a 0 or a 1. We should be able to represent 16 numbers. As
computer scientists, we’ll represent numbers from 0 to 15.

Our 16 patterns are base 2, orbinary, numbers. Again, we call the digitsbits.

Each bit may be 0 or 1. That’s all we have.

Just like in base 10 (ordecimal), where we have the 1’s (100) place, the 10’s (101) place, the 100’s
(102) place, etc, here we have the 1’s (20), 2’s (21), 4’s (22), 8’s (23), etc.

As you might imagine, binary representations require a lot of bits as we start to represent larger
values. Since we will often find it convenient to think of our binary values in 4-bit chunks, we will
also tend to use base 16 (orhexadecimal).

Since we don’t have enough numbers to represent the 16 uniquedigits required, we use the numbers
0–9 for the values 0–9 but then the letters A–F to represent the values 10–15.

2

CSC 202 Introduction to Programming Fall 2012

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

Any number can be used as the base, but the common ones are base2, base 8 (octal, 3 binary
digits), base 10, and base 16.

A byte (8 bits) of data can be written as a decimal number in therange 0 to 255, as 8 binary bits,
or as two hexadecimal symbols.

Two bytes of data: decimal in the range 0-65535, 16 bits, or 4 hex digits.

Decimal-Binary-Hex Conversions

Since we will encounter values in decimal, binary, and hexadecimal at various times, we should
think about how to convert among these representations.

We’ll first look at the easiest case: converting back and forth between binary and hex. Each hex
digit represents 4 bits and each group of 4 bits can be represented by a hex digit.

So to convert the hex value7A4D to binary, we convert each digit:

0111 1010 0100 1101

And to go back the other way, we can start with

0100 1011 0000 0110

(conveniently written in groups of 4 bits) to obtain4B06 in hex.

Converting from binary or hex to decimal is also pretty straightforward. We just add up the values
represented by each digit. Start with a binary value:

3

CSC 202 Introduction to Programming Fall 2012

01011011

This binary string is interpreted:

0× 2
7
+ 1× 2

6
+ 0× 2

5
+ 1× 2

4
+ 1× 2

3
+ 0× 2

2
+ 1× 2

1
+ 1× 2

0

which is 64+16+8+2+1 = 91 in decimal.

Notice that this isexactly the same way we interpret a decimal value. The value 2872 in decimal
is really:

2× 10
3
+ 8× 10

2
+ 7× 10

2
+ 2× 10

0

It’s a similar idea converting from hex. Here, we’ll look at the place values in base 16. Starting
with the hex value30C7:

3× 16
3
+ 0× 16

2
+ 12× 16

1
+ 7× 16

0

We’ll probably grab a calculator for this:

3× 4096 + 12× 16 + 7 = 12288 + 192 + 7 = 12487

The remaining conversions start from decimal. We’ll first convert decimal to binary. We assume
here that we are going to store our result in 8 bits, but the procedure can be extended to larger
values.

We will use 108 (decimal) as our value.

Let’s remember what each position in our 8-bit binary value represents:

The first bit is the number of27 = 128’s in the number.
The second bit is the number of26 = 64’s
The third bit is the number of25 = 32’s
The fourth bit is the number of24 = 16’s
The fifth bit is the number of23 = 8’s
The sixth bit is the number of22 = 4’s
The seventh bit is the number of21 = 2’s
The eighth bit is the number of20 = 1’s

We work in order from left to right. If the number is greater than or equal to the value stored in
a position, we place a 1 in that position and subtract the value for that position from the number.
Otherwise, we place a 0 in that position.

So for our number 108, we start with the 128’s place. 108 is smaller, so we place a 0 there:

4

CSC 202 Introduction to Programming Fall 2012

0???????

Next, we notice that 108 is larger than 64, so we place a 1 in the64’s place and subtract 64 from
our number. Subsequent steps will work with the number 44.

01??????

44 is greater than 32, so we have a 1 in the 32’s place, and are left with 12 to work with.

011?????

There are no 16’s in 12, so we put a 0.

0110????

There is an 8 in 12, so we place a 1 and subtract, leaving us with4.

01101???

And there is a 4, so we place a 1 in the 4’s and are left with 0.

011011??

The 0 remaining will not contain any 2’s or 1’s, so we will be placing 0’s in the final two positions.

01101100

And there’s our answer.

We will follow a similar procedure to this to convert decimalto hex, but it’s a little more tricky
since we’re dealing with powers of 16.

Here, we will assume that we want the answer in 4 hex digits, and we’ll start with the decimal
number 19,832.

First, we need to remind ourselves what the place values are in hex:

163 = 4096

162 = 256

161 = 16

160 = 1

So we begin by figuring out how many 4096’s there are in 19,832.If we divide 19,832 by 4096,
we get 4, with a remainder of 3448. So our first hex digit will bea 4.

5

CSC 202 Introduction to Programming Fall 2012

4???

And we continue working with that remainder, 3448. Note thatyou can also think about subtracting
4× 4096 = 16384 from our starting number to get that remainder.

How many 256’s are there in 3448? Well,3448

256
gives us 13, with a remainder of 120. This means

we need to use 13 as our second hex digit. Recall that the character we use to represent 13 is D.

4D??

Continuing on, we are left with 120 and we need to fill in the 16’splace. 120

16
gives 7 with a

remainder of 8. So we have our last two digits, and the hex representation of our number is

4D78

It’s All Binary

So we have seen how we can represent unsigned (i.e., non-negative) whole numbers in binary.
However, that is just one of many kinds of data that we will wish to store and process.

• Integers (including negative numbers): the representation is similar to what we use for un-
signed numbers. The usual representation is called2’s Complement, but the details are not
our concern.

• “Real” numbers with fractions/decimal points: there are many choices of how to represent
non-intergral values. The representations almost always used are calledfloating pointrepre-
sentations. Not all values can be represented exactly – approximations are needed.

• Characters: representing text. The two most common mappingsof binary values to charac-
ters:

– TheAmerican Standard Code for Information Interchange(ASCII) – provides a set of
one-byte representations for English characters, numerical digits, and common punc-
tuation.

See:http://en.wikipedia.org/wiki/ASCII

– Unicode– introduced about 20 years ago – representations are 2 bytesper character,
allowing the inclusion of many international characters.

See:http://en.wikipedia.org/wiki/List_of_Unicode_characters

Text such as that in the document you are reading now is represented as a sequence of ASCII
or Unicode characters.

6

CSC 202 Introduction to Programming Fall 2012

• Other media, such as sound, images, and video each have many possible representations.
When we refer to an “MP3” audio file, or a “JPEG” image, or an “MPEG” movie, we refer
to a file that follows a specific set of rules about what bit patterns correspond to the sound,
image, or video being represented.

• Computer instructions: both the data and instructions are stored as binary values in the
computer’s memory. We will look at this briefly in the next section.

Units for Measuring Data

While the fundamental unit of information is the bit, the smallest unit of data usually considered is
a group of 8 bits, called abyte. A byte is enough to store any one of 256 (=28) values. Typically, a
byte can represent a number or a letter or a special character(like a !). We will look more carefully
later in the semester at how bytes can be used to represent specific number or characters.

To represent anything beyond the simplest data, we will needto use lots and lots of bytes. A page
of text requires a few thousand bytes. So a several hundred-page book requires over a million
bytes.

This leads us to some prefixes to indicate numbers, many of which you have likely heard used in
this context:

Unit Abbrv. Size

Kilobyte KB 210 = 1024 bytes 2.4% more than103 (thousand)
Megabyte MB 220 bytes 4.8% more than106 (million)
Gigabyte GB 230 bytes 7.3% more than109 (billion)
Terabyte TB 240 bytes 9.9% more than1012 (trillion)
Petabyte PB 250 bytes 12.5% more than1015 (quadrillion)
Exabyte EB 260 bytes 15.2% more than1018 (quintillion)
Zettabyte ZB 270 bytes 18% more than1021 (sextillion)
Yottabyte YB 280 bytes 21% more than1024 (septillion)

See:http://www.unc.edu/ ˜ rowlett/units/large.html

Note that each entry in the table is 1000 times larger than theprevious. These are some incredibly
huge numbers!

These prefixes are used elsewhere in describing sizes in computer technology. A camera’s “megapix-
els” indicates how many millions of pixels are in the images that the camera can capture.

Hardware vs. Software
You have certainly heard the termshardwareandsoftware. All of the physical components of the
computer are considered hardware. The programs that use thehardware to perform specific tasks
make up the software.

7

CSC 202 Introduction to Programming Fall 2012

We will discuss software in more detail later. For now, note that there are two major categories of
software:

• Application softwareconsists of the programs you use all the time, like an email client, a
web browser, and a word processor.

• System softwareor theoperating systemis the interface between the hardware and software.
This is what allows you to use the same (or at least very similar) applications on very differ-
ent underlying hardware.

Hardware Components
We will break hardware into four categories for now:input devices, output devices, processors and
memory, andpersistent storage.

An additional category ofnetwork devices, which allow computers to communicate with each
other, will be a major topic for us a bit later.

Input Devices

Some input devices are very common, others are more specialized.

• keyboard: enter typed data and commands

• mouseor touchpad: select items on a screen

• microphone: input audio

• scanner: capture digital images of physical media

• digital cameraor webcam: capture capture digital images or video

• stylus: a “pen” to “write” on a screen

Output Devices

There is also a wide variety of output devices that you may or may not be familiar with.

• monitor: video output (previously CRTs, now LCDs)

• printer: produce physical output

• speakers: audio output

• projectors: really just another type of monitor

8

CSC 202 Introduction to Programming Fall 2012

Processors and Memory

The brains of your computer – the part that can perform calculations and store the data used by
those calculations – are the processor and memory.

If you open up a desktop or laptop computer, you will find a circuit board which has attached to
it many other smaller circuit boards and other devices. Thisis themotherboard. It contains slots
to install acentral processing unit(CPU),random access memory(RAM) and expansion devices
such as sound, video, modem, or network cards. There will also be external ports, where devices
can be connected.

We begin with RAM, sometimes calledmain memoryor primary storage. Modern computers have
hundreds of megabytes or up to a few gigabytes of RAM. Data stored in RAM can be accessed
quickly for use in computation. However, it is avolatilestorage, so its contents remain intact only
as long as the computer remains on.

The processor is what performs the computations by executing a sequence ofinstructions, which
are simple commands like “add these two numbers” or “comparethese two numbers”. These
commands as well as the data on which they operate are stored in RAM. A modern processor is
capable of performing billions of these simple operations each second.

Measuring Speed

But.. how fast is fast, when discussing RAM and processors?

The basic unit is acycle – this is how long it takes for one instruction to be executed by the
processor, or a value to be stored or retrieved by the memory system.

We want to measure the number ofcycles per second, and the unit here ishertz, abbreviated “Hz”.

A speed of 10 Hz would indicate that there are 10 cycles per second, meaning each cycle takes 0.1
seconds.

Even the earliest computers were capable of a few thousand cycles per second. Today’s computers
do billions.

Our prefixes come into play here again. For many years, processor speeds were measured in
megahertz(MHz) and today most are measured ingigahertz(GHz).

So let’s consider a processor that operates at 1 GHz. This means it can perform one billion cycles
per second, and hence performs each cycle in one billionth ofa second. That is an unimaginably
short amount of time. There is aclock keeping the operations of the computer synchronized that
switches from a 0 value to a 1 value a billion times per second.

Just as we saw the prefixes for large multiples of a value, there are some common prefixes used to
represent fractional parts, in this case, of seconds.

9

CSC 202 Introduction to Programming Fall 2012

Unit Abbrv. Length

second s 100 (one)
millisecond ms 10−3 (one thousandth)
microsecond µs 10−6 (one millionth)
nanosecond ns 10−9 (one billionth)
picosecond ps 10−12 (one trillionth)

See: the SI multiples section athttp://en.wikipedia.org/wiki/Second .

While these infinitesimal time scales are very hard to comprehend, we can think about some things
we think are fast and compare them to the speed of a computer.

Consider typing at a keyboard. The world’s fastest typists can input around 100 words per minute.
Given an average word size of 6 characters (5 letters plus a space), how many characters per second
would these typists be producing?

Contrast this with the number of instructions a 1 GHz processor is processing. In the time it takes
for a very speedy human to type a character, how many instructions has the processor executed?

The “Hertz” rating for a processor is an important factor in determining how much computational
power a computer has. We will consider other factors later inthe semester.

Persistent Storage

Since RAM is a volatile storage, any data that needs to be stored when the computer is power off,
or any data that is too large to fit in RAM, must be stored in apersistent storagedevice.

There are a number of technologies, varying in size and cost,that provide persisent storage.

• magnetic disks: bits of data are stored in densely-packed magnetic particles on a surface

– floppy disks: becoming a legacy technology due to small storage capacity(1 MB)

– hard disks: most common current technology, capacities now exceed 1 TBfor both
internal and external drives

• optical discs: compact discs (CDs), digital video discs (DVDs), Blu-ray disc – capacities
from around 700 MB for a CD to 25 GB for a Blu-ray

• flash storage: key/thumb drives, memory cards – now can store 64 GB or more

Device Connection Interfaces

Next, we consider how devices (or,peripherals) can be connected to a computer. You have likely
seen how many different devices connect. For the novice, this is just a matter of matching the right
cord to the connection that fits the cord. But we will spend a bitof time considering the common
interfaces on modern computers and which devices typicallyuse them.

10

CSC 202 Introduction to Programming Fall 2012

A peripheral is (typically) connected via a cord that ends with a connector. The connector has
a shape that matches with aport on the computer. Usually, the connector has some number and
configuration of metal pins, and these pins make contact withmatching pin slots on the port.

It is through these connections that the peripheral device and the computer communicate using
electrical signals. At most one value can be transmitted on each pin at a time, so any meaningful
amount of data will need to be transmittedsequentially, forming abitstream.

The speed of an interconnect is determined by how quickly this bitstream can be transmitted, its
transfer rate.

• data transfer ports: two-way data communication

– most common today:universal serial bus(USB)

– legacy: the traditionalserial portandparallel port

– fast: FireWire

• network ports

– Ethernet port: local area network connection

– modem port: phone line (also becoming legacy)

• audio/video ports

– video graphics array(VGA): connect older monitors

– S-video(super video): PC/TV interconnect

– digital video interface(DVI): digital LCD connection

– High-Definition Multimedia Interface(HDMI): home theater

The transfer rate varies widely among these devices. These are measured inbits per second(bps).

Older serial ports operated at 115 Kbps and parallel ports could operate at 500 Kbps. The original
USB ports operated at 12 Mbps and USB 2.0 increased that to 480Mbps. USB 3.0 will operate at
4.8 Gbps.

FireWire devices can operate at 400 Mbps or 800 Mbps.

See:http://www.coolnerds.com/Newbies/Ports/ports.htm

Architecture Basics
Modern computers use thevonNeumann architecture.

Idea: a set of instructions and a loop:

1. Fetch an instruction

11

CSC 202 Introduction to Programming Fall 2012

2. Update next instruction location

3. Decode the instruction

4. Execute the instruction

5. GOTO 1

Basic picture of the system:

(microcode)

scratchpad

ALU:
arithmetic

logic
unit

Microsequencer
(BRAIN!)

control
store

The ALU knows how to do some set of arithmetic and logical operations on values in the scratch-
pad.

Usually the scratchpad is made up of a set ofregisters.

The micro-sequencer “brain” controls what the ALU reads from the scratchpad and where it might
put results, and when.

We will not be concerned about the details of the micro-sequencer.

This is what makes up thecentral processing unit (CPU).

We can expand this idea a bit to include memory and other devices.

12

CSC 202 Introduction to Programming Fall 2012

other devices...

scratchpad

ALU:
arithmetic

logic
unit

Microsequencer
(BRAIN!)

control
store

(microcode)

CPU
Chip

Memory

Address Bus

Data Bus

lots of pins

mouse

The CPU interacts with memory and other devices onbuses.

These buses are just wires that carry the electrical signalsthat represent the data.

If you dig deep down into any modern computer you use, it boilsdown to this basic process.

All of the instructions, data, and control signals come downto binary numbers.

For example, if we happened to be using a MIPS processor in ourcomputer, and the CPU encoun-
ters this instruction

00000010001100100100000000100000

the processor will know that it means to take the numbers found in registers named$s1 and$s2 ,
add them together, and put the result into a register named$t1 .

Somehow, the fact that this is anadd instruction and which registers are involved is encoded in
this particular 32-bit value.

13

CSC 202 Introduction to Programming Fall 2012

Take a computer organization/architecture course to learnall of the details.

14

