
Computer Science 180
Web Design
Siena College
Fall 2011

Topic Notes: JavaScript Form Validation

Our next group of examples involve doing error checking on form elements. For example we may
wish to require that certain fields have values (like a name oraddress), that certain fields use only
a limited set of characters (like a ZIP code or phone number),or that<select> menus or radio
button groups have a valid option selected. This process is known asvalidation.

We can accomplish this in many ways – we will consider some techniques that use JavaScript.

Required Fields
We start simple: a form that requires one to enter a first and last name.

See Example: entername.html

The form itself is nothing new – we have two text inputs and a button that calls a JavaScript function
to process it.

The difference here is that we check the contents of the text inputs before using them and hiding
the form. If we find an error, an alert is displayed, then the function returns before proceeding to
the end, where the result message is posted and the form is hidden.

A second option would be to replace the alert popups with error messages on the form.

See Example: entername2.html

Here, when an empty text input is found, an error message is displayed next to that field (in a third
column in the table that was not evident from the initial display). We also have a local variable
errorFound that remembers if any error has been encountered. It starts asfalse (after all, we
haven’t found any errors before looking). Then, if any emptytext input is found, the variable is
changed totrue.

Then after all fields have been checked, if an error was found,we return before removing the form
and displaying the result.

This approach has the advantage of avoiding what might be an annoying popup alert, and it informs
the form’s user of all errors at once, with messages right next to the place where the error occurred.

Let’s do a minor improvement on this, informing the user of how many errors have been detected.

See Example: entername3.html

Here, rather than a variable that holdstrue or false, we have a number that counts the errors
as they occur. Then if any errors were found, a new<div> is given a message.

Another possibility is to disable the form submission button until all elements have been given
valid values.



CS 180 Web Design Fall 2011

See Example: entername4.html

In this case, thepressed function becomes much simpler, because it can only be calledif the
button is not disabled, which is the case only when all form elements are valid.

The validation work ends up being done in thefieldChanged function, which gets called every
time someone presses a key inside one of the text inputs. Thisis accomplished by setting the
onkeypress attribute.

The function looks at thevalue attribute (the contents) of each text input (not just the onebeing
modified – why?). If it finds one that is empty, it disables the button and returns. If the function
proceeds beyond all of those checks, it must be the case that no errors were found, so the button is
enabled.

Numeric Fields and Regular Expressions
Next, we consider the validation of a numeric field. There is no form control that allows only
numbers to be entered, so we need to do some work to check for this.

We will consider a special case of this – a 5-digit ZIP code. A ZIP code consists only of numbers,
of which there must be 5.

See Example: zipcode.html

We can enforce the upper limit of 5 digits by creating the textinput with amaxlength of 5. This
way, no one can possibly type more than 5 characters. But they can type fewer than 5, and they
can type things other than numbers.

The work here is in thepressed function, which reads thevalue from the field and makes sure
it’s a valid ZIP code. If it fails any of the tests, an appropriate error message is displayed. If all
tests are passed, it displays the result.

The first check is to see if the ZIP code is missing completely.This is the same as we saw in the
“enter your name” examples for a required field.

If something is in the field, we now need to make sure it’s a valid ZIP code. First, we check that its
length is 5. We can do this by checking the.length property of the value we retrieved from the
text input. If it’s not, we display an appropriate error.

The next check is to see if the 5-character value is a valid number. JavaScript provides some built-
in functions that help here. The first isparseInt. parseInt takes a string as its parameter
(such as the one we retrieved from the text input) and returnsa numeric representation. Often,
we’d use this to obtain a number on which we might be able to do math, for example. But here,
we just want to see if it’s possible to convert the value to a number. If not, it returns a special value
NaN, which stands for “not a number”. We can then see if that is thevalue that was returned using
JavaScript’s builtinisNaN function. If isNaN returnstrue when passed the number returned
by parseInt, then the text input didn’t contain a valid number. So, we display an appropriate
message. Whew.

But we’re not done. The string-1234 is 5 characters long and is a valid number, but not a valid

2



CS 180 Web Design Fall 2011

ZIP code. So we then check to see if the number returned byparseInt is less than 0. If so, we
display an error message.

Unfortunately, this does not work – it accepts any 5-character value thatstarts with a number. This
is because theparseInt function will look for any number at the start of the string itis passed,
and will ignore any additional characters. So...not good enough.

Instead, we need to examine the characters individually andmake sure that each is numeric. While
this is more complex, it does mean we can replace two of our tests (“must be numeric!” and
“cannot be negative!”) with a single test.

See Example: zipcodefixed.html

The key here is to use aregular expression to determine whether the string from the field contains
only the digits 0 through 9.

Essentially what we are doing is pattern matching. In this case, we define a pattern using a special
notation, then call a functiontest to see if that pattern matches our given input.

The patterns are defined in a special regular expression notation. This notation is not specific to
JavaScript – you can find it in other programming languages and other contexts.

Our pattern is:

/[0-9]{5}/g

What is that supposed to be? Let’s break it down:

• The two/ characters are the delimiters of the regular expression. Everything in between
them defines the pattern.

• [0-9] defines arange of matching characters – in this case all characters from 0 through
9 – the numbers. If we wanted all lowercase letters, we could use the range[a-z], while
[A-Z] would match all uppercase letters.[0-9a-zA-Z] would match all numbers and
both uppercase and lowercase letters.[aeiou] would match only vowels. It is a flexible
construct.

• {5} defines how many copies of that character are required in the pattern. Here, we want 5
digits in a row. Anything else would not match the pattern.

• Theg at the end indicates that this is to be aglobal match – for now, we’ll include it on all
of our patterns.

So this is a pattern consisting of exactly 5 characters, all of which are in the range from 0 to 9.

The pattern match occurs with the expression:

pattern.test(zipcode)

3



CS 180 Web Design Fall 2011

test is a method (like a function) that can be applied to a regular expression. We send it a string
value and it returnstrue if the string matches the regular expression,false otherwise.

Since we want to trigger our error in the case when the method returnsfalse and we only would
execute the statements inside the theif block when the condition istrue, we need to take the
opposite, which can be done with the! in front of the method call.

What would thetest method return for each of these inputs and why?

• pattern.test("39xe2")

• pattern.test("392")

• pattern.test("-2344")

• pattern.test("10.02")

• pattern.test("12010")

There is a comment in thepressed function in the example that shows an alternate regular
expression that would work here:

var pattern=/[0-9][0-9][0-9][0-9][0-9]/g;

Here, we require that there be a character in the 0-9 range followed by another and another and
another and another.

We will see more regular expressions as we validate some other types of input.

You may be wondering why we still need the check for the lengthof the ZIP code being 5. Won’t
the pattern match take care of it? The answer is yes, it would,and we could remove that check and
still accept only valid ZIP codes. It remains in the example only because it gives a slightly more
specific error message in the case when the length does not match.

For a slightly more interesting case, consider a field that requires a ZIP+4, which consists of a
regular 5-digit ZIP code followed by 4 more digits.

See Example: zipplus4.html

We can accomplish this easily with a more complex regular expression:

/[0-9]{5}-[0-9]{4}/g

Here, the requirement for a pattern match is that there are 5 characters in the 0-9 range, followed
by a-, followed by 4 more characters in the 0-9 range.

Other changes in this document from the previous are just to change some labelling and to allow
10 characters of input in our text field.

4



CS 180 Web Design Fall 2011

Select Drop-Down Menus
When using a<select> we know that the<option> selected must be one of the<option>s
in the list, so there is usually not much work to do. An exception is when there is no “preselected”
valid default option. You have certainly seen some forms where the drop down starts up showing
the option “Please select”.

This has the advantage that someone will need to make a conscious decision about their selection
rather than taking a default value that may not be correct. But...we do not want to allow submission
of the form unless one of the real options has been chosen.

See Example: favoritecolor.html

Here, we simply check for thevalue of the “Please select...” option and display the error message
and return if it is the current selection.

Radio Buttons
We have already seen what we need to validate a set of radio buttons – we simply need to ensure
that some selection has been made.

See Example: radiovalidate.html

The approach is to set the variableyear to the value"none" initially, then check each radio
button (as we did before), updatingyear if we find one of the inputs to be checked. If after all
radio buttons have been tested and theyear variable remains"none", we display an error and
return.

Matching Fields
You have probably encountered web forms where some information must be entered twice, often
an email address or a password. You are not allowed to continue until you have entered the same
value in both fields.

See Example: passwordmatch.html

This is a straightforward thing to check. We retrieve both password values from the form. If they
are not equal, we set the error message as in previous examples.

Password Requirements

While discussing passwords, we should consider some other typical requirements for passwords.
These may include minimum length requirements or requirements that different combinations of
letters, numbers, and punctuation be used in a password.

See Example: passwordset.html

5



CS 180 Web Design Fall 2011

Here, we require that the same password be entered twice, as before, but also require that the
password has at least 6 characters including at least one letter and at least one number.

Checking the length is done by making sure that the.length property of thepasswd string is
at least 6.

Checking that the required combination of at least one letterand one number has been satisfied
requires a bit more work. To help with this, two regular expressions are defined:/[a-zA-Z]/g
represents all of the alphabetic characters and/[0-9]/g represents all of the numeric characters.
Eachtest method call with these checks that thepasswd contains, first, a letter, and second, a
number.

Required Checkboxes
Another common requirement on forms is that a checkbox be selected to agree to some terms of
use, or something similar.

See Example: agree.html

Here, we check to make sure that the checkbox ischecked – if not, we display an error. If so,
we continue.

General Numeric Input
We considered a special case of a numeric field – the ZIP code. But what about other numeric
fields? Typical restrictions on numeric fields might includethat the number has to be within a
given range (“I am thinking of a number between 1 and 100”) or cannot be negative, or cannot
include a decimal point.

In this example, we are requiring an “invoice number” that weknow should be numbered between
0 and 999,999.

See Example: invoicenumber.html

The text input is created with amaxlength of 6, which will prevent entry of any numbers that
are too large. So in the JavaScript validation function, we need to check the following:

• The field cannot be empty – this is accomplished in the same wayas in previous examples.

• That the entry is a valid integer. To do this, we callparseInt(invoice) to convert
the input into an integer, if possible. But since this could return a valid number for inputs
we wish to disallow (like “45b3se” which would be converted to “45” by parseInt), we
compare the value it returns to our original input. If they match, it means the entire string
was successfully converted to an integer. Otherwise, all orpart of the string was not numeric,
so an error is reported.

• Finally, we need to make sure the number is not negative, asparseInt is perfectly happy
to process negative numbers.

6



CS 180 Web Design Fall 2011

Special Fields
We have already seen one type of “special” field: the ZIP code must be numeric and must contain
exactly 5 digits. As a general rule, it is good to do the most precise checking of input fields like
this as we can, and to provide the most specific error messageswe can.

Telephone Numbers

A common example is the processing of a telephone number. We will assume we are using numbers
in the multi-country “North American Numbering Plan” wherea telephone number consists of
a 3-digit area code, a 3-digit exchange, and a 4-digit subscriber number. There are additional
restrictions, we we will ignore them for the moment.

Any of the following are perfectly reasonable representations of my office phone number:

5187834171
518-783-4171
518 783 4171
(518)783-4171
(518) 783-4171
518.783.4171

And this is before we consider the fact that most numbers on a telephone keypad also correspond
to letters of the alphabet!

We have all been annoyed by poorly-designed web forms (laziness, I call it) where you enter a
phone number and are told “you must enter your phone number inthe following format: (xxx)
xxx-xxxx” and if you don’t get the format perfect, an error will be generated. Worse yet, you are
not told what format to use until you have already used a different (still perfectly reasonable) one
and have been presented with an error message.

There are two reasonable approaches to eliminate this source of annoyance and frustration among
those who will be filling out our form:

1. Accept as many reasonable formats as possible using a “free form” input field, or

2. Present the fields in a way such that the user can only fill outthe fields in the format you are
expecting.

In either case, the input should be converted to a canonical format convenient for later storage or
display. This might mean that each phone number is convertedinto three separate numeric strings:
one for the area code, one for the exchange, and one for the subscriber number. Or, the number
could be converted to a single string of 10 digits with no spaces of punctuation.

7



CS 180 Web Design Fall 2011

The following example illustrates both input techniques, and converts to the second canonical
format described (one 10-character string).

See Example: phonenumbers.html

In the form itself, we see a single text input with amaxlength of 15 (to allow for some spaces,
dashes, etc., in addition to the 10 required digits) for the home phone number, and three separate
text inputs, with appropriatemaxlength values (3, 3, 4), and parentheses around the area code
field and a dash between the exchange and the subscriber number to help indicate the expected
format.

See the comments in the example’s JavaScript event handler function for details of how these fields
are validated, converted into the canonical format, and displayed in a nice format after the form is
accepted.

8


