Computer Science 120

Introduction to Programming
SIENAcollege siena College

Computer Science Sprlng 2012

Topic Notes: Java and Objectdraw Basics

Event-Driven Programming in Java
A program expresses an algorithm in a form understandabéedoynputer.
That “understandable” form is a program and must be writhegogrogramming language.

There are many, many programming languages, each of whghsawn advantages and disad-
vantages. We will consider just one (very popular) one: Java

We choose Java because itis in wide use, can be used to vageapns that perform a wide variety
of tasks to run on a wide variety of computers. It is adbfect oriented, a term we will see in more
detail soon.

We will focus on one particular type of program, at least far tirst part of the semester: avent-
driven program. Many programs execute from beginning to end to compute afsmitputs from

a set of inputs. But an event-driven program responds toreegach as a mouse click or a key
press by performing some specific action, then waits for the event.

Java was designed with events in mind, and we will take adggnof this. It means we can write
programs that respond to mouse movements and clicks, andllwesgthose programs to display
and manipulate some simple graphical objects.

A First Program
So we consider our first Java program:
See Example: TouchyWindow

If we run the program, we see that it brings up an empty winddiven | press the mouse button
in the window, a message appears, and when | release the imatse, it disappears.

While that in itself doesn’t seem very exciting, keep in mihdttthe program we are running is
very simple. It fits easily on one screen. Let’s take a lookattext of this program and see what
it all means and why this program does what it does.

i nport obj ectdraw. *;
i mport java.awt. *;

Thesei nport lines tell Java that our program is going to build upon sondedhat’s already
been written by others. “objectdraw” is a software libragyeloped by the authors of our text that

CS 120 Introduction to Programming Spring 2012

will allow us to write event-driven graphical programs vattt worrying about some of the gory
details. “java.awt” is part of the standard Java libraryt thelps to display windows on the screen.

These two lines will appear at the top of nearly every progvasmwrite this semester. Nearly all
Java programs begin with a seried ofpor t lines to bring in the building blocks they will use.

| *
* A first Javal/objectdraw exanpl e.
* From Bruce, Danyluk, Mirtagh, 2007, Chapter 1.
*
* $Id: objectdraw tex 1785 2012-01-23 03:51:01Z terescoj $
* |

This next segment is eomment. Everything here between thie and thex/ is ignored by the
computer. It is there entirely for our benefit — the humans weed to write or understand the
program.

public class TouchyW ndow ext ends W ndowController {

This line gives us (and Java) a lot of information. First, téwen publ i c is telling Java that the
program is “public” — we can run it. We’ll see alternativegtiobl i ¢ in some contexts, but every
one of our programs will start this way.

The wordcl ass tells Java that we are about to define a “class”. The reasothéterm will
become more clear soon.

TouchyW ndow is the name of our program (and the name ofc¢heass that defines the pro-
gram.

ext ends W ndowCont r ol | er means that this neal ass we're defining calledouchyW ndow
is going to build upon (“extend”) another, already existingass, called aN¥ ndowCont rol | er.
Essentially we're saying that we’d like to usaMndowCont ol | er, but we're extending it to
have some new functionality above and beyond, and we’rangahat newcl ass TouchyW ndow.

TheW ndowCont r ol | er cl ass is defined by the objectdraw library. It is what puts the win-
dow (i.e., the white box) up on the screen. By itself, it nevsplays anything in the window. It's
up to us, in our extension, to make use of that box to do somg{siightly) more interesting.

Lastly, there is a {" character, which tells us that trebass header is complete and now we’re
ready to start to define thabass body.

In our case, the class body contains tethods:

/* This nmethod will execute when soneone clicks on the w ndow.
It will result in a nessage being displ ayed.

* |

public void onMousePress(Location point) {

2

CS 120 Introduction to Programming Spring 2012

new Text ("I’ mtouched", 40, 50, canvas);

}

I+ This nethod will execute when the nouse button is rel eased.
It will renmove everything drawn in the wi ndow, which in this
case can only be the text nessage di splayed by the above.

*/

public void onMouseRel ease(Location point) {
canvas. cl ear();

}

These methods are where the actual instructions are g Bethod is preceded by a comment
describing what it does. But we’ll look at the methods thewves|

There are two methods definednMousePr ess andonMouseRel ease. In each case, the
name of the method is preceded lpubl i ¢ voi d” and followed by (Locati on point).
For now, we’'ll just say that these methods need to have thesa words and symbols — their
meanings and what else we might put in those positions withedater. This is all called the
method header .

Following the method header, there is agaifi éharacter, which denotes the start of thethod
body.

In each of our methods, the method body consists of a singéesiatement. lonMousePr ess,

we tell Java that we wantmew piece ofText to be drawn on our screen, and we specify what
text we want, where it should be placed (40 and 50cacedinates — more on this soon), and on
what we should draw it (theanvas, which is objectdraw’s name for the window placed on our
screen by th& ndowCont r ol | er).

Specifically, Text is a class, defined by the objectdraw library. When we saw Text ”,
we are instructing Java to find tld ass definition for Text and construct an object of that
class. The specifics of how to create thatkt object are determined by thparameters listed in
parentheses aftenéw Text ”.

In theonMbuseRel ease method, the statement is an instruction to ¢l vas to erase any-
thing that's been drawn on it.

Note that each method and the class definition itself is teated by a }” character. This ends the
definition of either the method body or class body that watesleby a{ character.

So we have a complete program — why does it make our progranhdoitrdoes when we run it?

As their names suggest, the instructions in the bodies ofmaiihods execute in response to mouse
events. Specifically, when someone presses the mouse buttorwindow, theN ndowCont r ol | er
looks for a method namemhMousePr ess and executes the statements in that method. Similarly,
when the mouse is released, the instructionsrivbuseRel ease are executed.

Other Mouse Event M ethods

CS 120 Introduction to Programming Spring 2012

As you might guess, there are other “mouse event” method&hbieathat we can use to make our
program more responsive. Any class that ends W ndowCont r ol | er may define:

public void onMused ick(Location point)
public void onMouseEnt er(Location point)
public void onMouseExit(Location point)
public void onMousePress(Location point)
public void onMouseRel ease(Locati on point)
public void onMbuseMove(Locati on point)
public void onMouseDr ag(Locati on point)

Finally, there is one additional method we can defineW adowCont r ol | er, calledbegi n.
It looks very similar to the others except that it doesn’'téndlre ‘Locati on poi nt”. The
begi n method, as its name suggests, executes exactly once: wdproram begins.

We will soon make use dbegi n and more of the mouse event handlers, but first, we’ll take a
look at what else we can draw besides bits of text.

Graphics Primitives

To fully understand the instructions within the method lesdive have examined, you need to
understand how the system for drawing graphics within a pesgram work.

To place an object on the screen, you include an instrucatledca construction in a method. Each
construction will include:

e The wordnew

e The name of the type of thing you want to draw. Possibilitredude:

FranedRect, Fill edRect
FranmedOval, Fill edOval
Text, Line

¢ alist of extra bits of information calleattual parametersthat determine the size and position
of the object displayed.

Some examples:

new FranmedRect (10, 10, 40, 60, canvas);
new Line(x1, yl1, x2, y2, canvas);

new Text ("hello there", x, y, canvas);
new Fil | edOval (100, 100, 30, 60, canvas);

CS 120 Introduction to Programming Spring 2012

The most important of the parameters included in these aaigins are those that specify the
locations and dimensions of objects. They are interpreteddoordinate system in which:

e The basic unit of measurement is one dot on the computepagig.e., onepixel).

e The y-coordinate is “upside down” compared to the conventiom mathematicsi ., the
bigger the y-coordinate, the closer to the bottom of theestre

e Theorigin (i.e, the point (0,0)) is located in the upper left corner of theggam’s window
(not of the display).

For theFr amedRect , this draws the outline of a rectangle with the upper lefheorat (10, 10),
with a width of 40 and a height of 60. So where is the lower righrner?

ThelLi ne isdrawn from(x1, y1) to(x2, y2).
TheText is drawn with its upper left corner &ix, vy).

TheFi | | edOval is drawn within an “imaginary box” with its upper left cornat (100, 100),
width of 30, height of 60.

Looking back at the TouchyWindow example, we can see thatetktas in fact placed at coordi-
nates (40,50) in this coordinate system.

Giving Namesto Objects
Now, let’'s experiment a bit with these different event typad object types.
See Example: ColorEvents

There are two new things in this example. First, we need tevkdmmw to set the color of an object.
This is done with the statement:

set Col or (Col or. xxx);

where ‘kxx” is one of the colors Java knows about.

But just saying et Col or ” isn't enough — we need to tell Java what object’s color ispaged
to change.

To do this, we need to give the object a name. This is the otiaerthing in this example. These
names are calledariables.

In order to use a variable to give a name to an object, we need two things:

1. We mustleclarethe variable. In this case, we are declaringiance variables since they are
defined inside of our class, but outside any method body. We&e other types of variables
later.

CS 120 Introduction to Programming Spring 2012

private FilledOval oval;
private FranedRect rect;
private Line |line;

A declaration “introduces” the name to Java, so when we ugsdt on, it knows what
the name “refers” to. In this case, we’re saying that the nama is going to refer to a
Fi | | edOval object.

2. We must associate a value with the variable. This is doimeywn instruction called an
assignment statement.
Our example has three assignment statements:

oval new Fill edOval (50, 50, 100, 200, canvas);
rect new FranmedRect (200, 10, 50, 100, canvas);
line = new Line(20, 300, 300, 20, canvas);

Note how we construct the object on the right hand side of #seggament operator (the)
and put the name where we wish to remember the object on the lef

Note that we can use any nhame we want for our variables. Theoghing saying we couldn’t use
the name bval ” for our Fr amedRect and ‘r ect ” for our Fi | | edOval . But that would be
confusing. It's always very good practice to use meaningéwrhes (and we’ll take points off your
labs and projects if you don't). It makes the program easieead and to understand.

There are a few restrictions on the words we can use with names

¢ Names must start with a letter.

e Names are case sensitive.

e Letters, digits, and underscores may be used in names.

e Names may not be a word already used by Java ¢likess or ext ends).

Now that we have our variables and have assocated objettsheiin, we can use those variables
to tell Java which objects to use for asiet Col or () statements.

rect. set Col or (Col or. bl ue);

Just like our mouse event handleeg)(, onMbusePr ess) are methods of ouN ndowCont ol | er
classesset Col or is a method of the classes that define our graphics primifinehis case, the
FranmedRect). The above shows how we call a method of a class.

A good way to think about this is that we are “sending a messtagihe object. So we have the
name of thigr amedRect , and we’re saying “heyect , set your color to blue!”.

6

CS 120 Introduction to Programming Spring 2012

We will soon see many more methods that will allow us to sensk@ages to the graphics primitives,
and we’ll write our own methods for the more complex graploisgcts we’ll define ourselves.

This next example uses one more method to modify an objeetrilie method.
See Example: SunAndMoon

Everything here is familiar except:

heavenl yBody. nove(0, 1.5);

As you might guess, this message tells the object ndmad enl yBody to move 0 pixels in the
x direction and 1.5 pixels in the y direction (down).

Every time we move the mouse in the window, this code execuateging the sun down a bit. But
in theonMouseDr ag method, the circle moves by -1.5 in the y direction, so it nsovp.

Accessing the Mouse L ocation

There is another important situation in which names are tisedfer bits of information your
program needs to work with. When the instructions within aeané\handling method such as
onMousePr ess are followed, it is sometimes handy to refer to the coordisathere the mouse
is located when the event occurs. Java makes this possilétiog you give it a name that should
be associated with this information within the header ofrtiethod.

In fact, Java doesn't just let you provide such a name — itireguhat you provide one. That is
why we have had to include the textlocat i on poi nt) ” in the header of each mouse event
handling method we have written. This phrase tells Javaviieawant to be able to use the name
poi nt to refer to the place where the mouse is located. We just eaetnally used this ability
yet.

See Example: MouseDroppings
This program places a small red circle on the canvas evegytti@ mouse pointer moves.

The only line of interest here is
new Fill edOval (point, 10, 10, canvas).set Col or(Col or.red);

Two things are different here from previous examples.

First, we have replaced the first two parameters td=ihel edOval construction, which specify
the x and y coordinates of the oval, with a single paramegperi ht ”.

Each time the mouse is moved, before following the instanstiin our method body, Java makes
the name poi nt ” refer to the coordinates of the current mouse position. Wheees the name
poi nt in the construction, it uses the coordinates of the mouskves had typed them in while
writing the program.

CS 120 Introduction to Programming Spring 2012

When used in this way, the nampei nt is called aformal parameter.

Note that the phraseL'bcati on poi nt” looks a lot like a variable declaration. The name
“Locat i on” describes the kind of thing thgtoi nt will refer to just as thefect " in

private FranedRect rect;

described the kind of information that could be associatit the name ect .

There is nothing special about the worpdi nt ” in this situation other than it appears in the
method’s header. Just as we can choose any word we want toruseihstance variable name, we
can choose things other thapdi nt ” as a formal parameter name. If we take the method from
this example and replace all thpdi nt "s with a different name likeffouselLocat i on”, the
program will work the same way.

Remembering infor mation between events

Now that we have seen how to use the mouse location for an,éggmntonsider a case where we
need not only theurrent mouse location, but previous mouse location as well.

We will construct a program to draw “Spirographs” — when theuse is pressed then dragged, a
series of lines are drawn from the press point to the curceition.

See Example: Spirograph

Note that in this example, the only thing doneanMousePr ess is to save the value of the
formal parametepoi nt in an instance variablei nesSt ar t . If we did not do this, the value
of poi nt would be lost.

The instance variable declarationis of typscat i on. That makes sensgroi nt isalLocat i on,
so the instance variable we’d use to store its value woulnllzdsal ocat i on.

Then in theonMouseDr ag method, we use the savedcat i oninlinesSt art as one end-
point of aLi ne that we draw to the curreoi nt from onMouseDr ag’s formal parameter.

Now let’s consider a small variation — mnMbuseDr ag, rather than simply drawing ki ne,
we’ll also update the savddbcat i on value.

What have we done? We've created a “scribber” drawing program
See Example: Scribble

And now, we’ll look at an example where we create an objectgponse to one event and change
it in response to subsequent events.

See Example: RubberBand

Here, we start by drawing a very small line — from ireessedPoi nt to itself — when the mouse
is pressed. We remember thatne in an instance variable.

Then when the mouse is dragged, we modify thahe to have a new endpoint at the current

8

CS 120 Introduction to Programming Spring 2012

mouse location. The result is a “rubber banding” effect.

