Computer Science 120

Introduction to Programming
SIENAcollege siena College

Computer Science Sprlng 2012

Topic Notes: Conditionals and Numbers

Using Numbers

So far we have been using numbers only as coordinates fonigedpbjects. We'll soon be using
them for much more. We'll first look at a very simple examplattbounts the number of times the
mouse has been clicked in the window, and displaysx@t object showing the current count.

See Example: ClickCounter

One of our instance variablespunt , is of typei nt (for “integer”). This is a variable that gives
a name to a number (rather than to a graphical object). It catam any integral value from about
negative 2 billion to positive 2 billion. Certainly plentyrfour purposes!

In thebegi n method, we give this variable its initial value of 0. ThenonMoused i ck, we
add one to its value and reassign that result badotont .

This example is also the first one that demonstrates an ianpof¢ature of good programming
style: the use otonstants. Note the following lines at the top of the class body, justvabour
instance variable:

private static final int DI SPLAY_X
private static final int D SPLAY_Y

150:
200;

As our programs become more complex, we will be using manyemnignvalues. Using many
somewhat arbitrary numeric values in a program can makertigrgam difficult to understand and
modify. We can improve the situation by associating theeslwith names so that we are reminded
what the values signify when we see the names used.

Java a mechanism to enable us to use such names effectiwaby include the wordsst at i ¢

fi nal ” in a variable’s declaration, this indicates that the vahissigned to it in the declaration
will never change. The most important word herefis fial ”. This means that its value cannot be
changed (possibly by mistake)

Note that not everything can be a constant. Constants maepend on anything created when the
program starts up (except other constants). In particalagnstant may not depend oanvas.
Thus we may never have a constant of tfpe | edRect , for example.

Conditional Execution

We have considered examples where we needed to remembentaipmj a Locat i on) or a
graphics objectdg., aLi ne) from one event to the next. Now, let’s look at an example wher

CS 120 Introduction to Programming Spring 2012

we need to remember both a point and a graphics object froneverd to the next. This program
draws rectangles interactively. When the mouse is predsedpbrdinates are saved as one corner
of a rectangle to be drawn. As the mouse is dragged, a reetadrawn with that point as one
corner, the current point as the other. Finally, when the seds relased, the final rectangle is
drawn.

Most of what we need to do here is similar to previous exambes let's think through how to
approach this.

First, which event handlers will we need? We need to stamidigawhen the mouse is pressed,
need to redraw the rectangle as the mouse is dragged (“tanypoectangles that provide visual
feedback to the user), and draw our final (permanent) reletavigen the mouse is released.

Next, we will consider what information we need in each evantdler and how we can get our
hands on that information.

When theonMbusePr ess method is invoked, the parameter will give us the coordmateone
corner of the rectangles we’ll be drawing. We don’t draw aimg yet, but this is information we
will need. So we save it in an instance variable.

When the mouse is dragged, we receive the other bit of infoomaeeded to draw the temporary
rectangle: the current mouse position. We can use anotirardbtheFr anedRect constructor,
one that takes twhocat i ons, to draw the appropriate temporary rectangle.

new FranmedRect (firstCorner, point, canvas);

But there’s more. What if this wasn't the first mouse drag everiten, we need to remove the

previous temporary rectangle before drawing a new one. ifieans we had better give a name to
the temporary rectangle in an instance variable. Then, we@aove the previous temporary

rectangle from the canvas before we draw the new one.

t enpRect . r emoveFr onCanvas() ;
tenpRect = new FranedRect (firstCorner, point, canvas);

If we do this, we’ll encounter some problems. The first time dimMouseDr ag event handler

is called, we will try to remove the object referred to by tlamet enpRect , but that name had
never been assigned a value! Essentially, we are tryingiit senessage to nothing, and Java will
respond by printing a long and messy error message. The éirsbpthe message will mention
aNul | Poi nt er Except i on. That's usually a good indicator that you've made use of agnam
before giving that name a value.

So what do we need to do? We need to make sure we only try to eethewectangle referred to
byt enpRect from the canvas if it has been drawn.

We'll use two steps to handle this. First, we’ll givenpRect a special value inthenMousePr ess
event to indicate that it does not refer to any object yetakaJan object name that refers to noth-
ing can be assigned the special vahug | .

CS 120 Introduction to Programming Spring 2012

Then inonMouseDr ag, we will first check to see if the value dfenpRect is something other
thannul | . Ifitis, that means it refers to an actual rectangle and vmeremove it from the canvas.

The mechanism we need to use to ask that question “is the ebllenpRect not equal towul |7
is aconditional, often referred to as an “if statement”:

if (tenpRect !'= null) tenpRect.renoveFrontCanvas();
tenpRect = new FranmedRect (firstCorner, point, canvas);

This allows us to execute part of our program conditionalgny if a certain condition is true.

With this in our arsenal, we can then complete the programmipjementing thenMouseRel ease
method. Here, we’ll need to remove the last temporary regd¢ainom the canvas (but only if we
know it exists!), then draw the permanent rectangle usiegé¢lease point.

See Example: Rectangles

Clicking on Graphical Objects

Armed with the conditional construct, we can add a bit moremregful interaction to our pro-
grams. We can react differently if a mouse event’s locatiaidates that the mouse is over a
particular object.

See Example: NudgeBall

In this example, we have a ball on the canvas. When the mougekisd; we move the ball to the
right if the click point was inside the ball. The key line hésex conditional:

if (ball.contains(point))
bal | . nrove(BALL_MOVE, 0);

The cont ai ns method exists for all of our graphical object and tells us tvbe the given
Locat i on lies within the bounds of that graphical object.

We have now seen two typesainditions used as the test for our conditional statement:
if (tempRect != null)

and
if (ball.contains(point))

In both cases, we need to decide whether or not to executddtenent immediately following
thei f statement. This is done by evaluating tiamlean expression inside the parens following
the keyword f .

CS 120 Introduction to Programming Spring 2012

A boolean expression is one that must evaluation to eithere or f al se. If it evaluates to
t r ue, the statement is executed. If it evaluate$ & se, the statement is skipped.

The first is the result of a comparison between a name and gwaswaluenul | . We will see
other comparisons soon.

The second is the result of sending a message to an obje& n@ssage returns eitherue or
f al se depending on whether the object contains the given point.

This example also includes more constants.

/'l a constant defining the size of the ball
private static final int BALL_DI AMETER = 50;
/'l a constant defining the initial |ocation of the ball

private static final Location BALL_POSI TION = new Location(100, 100);

/'l a constant defining how far to nove the ball when clicked
private static final int BALL_MOVE = 10;

In addition toi nt constants like we have seen previously, this example alsahacat i on
constant.

Random Numbers

For our next example, we will see a way to introduce some naméss into our programs. Specif-
ically, we will augment the “Spirograph” example to pick adam color (from a set of 4 possible
colors) for each Spirograph we draw.

We begin with the code from the original Spirograph. If we Vaolike each Spirograph we draw
to have a randomly-chosen color, we need to make some enhante

1. We need to be able to choose a color randomly.

2. We need to be able to remember which color we chose so dikedfrtes in the spirograph
are drawn with that color.

We'll first look at how to choose something randomly. Any piangming language allows us to
generate random numbers. Objectdraw provides a very camtemay to generate random integer
values. We can constructRandom nt Gener at or object, giving it the range of values we
would like it to generate. In our case, we’ll create one tlezat generate numbers in the range 1
through 4, and save it in an instance variable:

private Random nt Generator pickACol or = new Random nt Generator (1,

We can then call the methatext Val ue of our Random nt Gener at or to get a randomly-
generated value of 1, 2, 3, or 4.

4);

CS 120 Introduction to Programming Spring 2012

We’ll want to do just this every time the mouse is pressed anevaspirograph is started. So in
onMbusePr ess, we pick a number and store it in another instance variabliéead col or Nunber .

col or Nunber = pi ckACol or. next Val ue();

But a number isn’t a color; we need to translate that numberange of four colors to use. Once
we've picked a color, we will store it in an instance variabé&nedcur r ent Col or, declared as
typeCol or.

We can do that using conditionals. So far, we've only seewlitimmals that either do something or
not. In this case, we will use a variant: the “if else”, whickshlava test a condition, do one thing
if the condition ist r ue (the “if part”) and something else if the conditionfial se (the “else
part”).

For example, we could select one color if the random numbgrasother if it's not:

if (col orNunber == 1)

current Col or Col or . red;
el se

current Col or

Col or. green;

But we don’t want to do one of two things, we want to do one of fibimgs. So we can test a series
of conditions: “If it's 1, do this, otherwise, if it's 2, do ik otherwise if it's 3, do this, otherwise,
do this.”

I f (colorNunber == 1) {
current Col or = Col or.red;

} else if (colorNunber == 2) {
current Col or = Col or. bl ue;

} else if (colorNunber == 3) {
current Col or = Col or. nagent a;

} else {
current Col or = Col or. green;

Note that we add curly braces around the statements for @aitity. These also would allow us to
perform a series of statements within the if part or the etsé @ our conditional. If they are left
out, only the next statement is considered part of the if paeise part.

Now, we have assigned the nacwr r ent Col or to be one of four colors based on a randomly-
chosen value. All that remains is to apply that color to each tirawn in theonMouseDr ag
method.

See Example: ColorfulSpirograph

CS 120 Introduction to Programming Spring 2012

Using Custom Colors

So far we have used only a handful of pre-defined colorsQiideor . r ed, Col or . bl ack, etc..
We can extend beyond this limited color choice by creatingosn objects of the clagSol or .

We can create any hue we wish by mixing the appropriate araairthe primary colors of light:
red, green, and blue. Computer monitors (and televisions, ate typically made of lots of red,
green, and blue light sources.

If we want a purple color to use for our graphics objects, wero& red and blue:
purpl e = new Col or (255, 0, 255);

The three parameters to t@el or constructor are the amount of red, green, and blue to usé. Eac
is in the range of 0-255, where 0 means don’t use any of that,c@b5 means use the maximum
amount.

We will talk more later about creating just the color you havenind. For now, let’s think about
how we can create an entirely random color.

Well, if a Col or object is constructed from three numbers in the range 0328%an just generate
three random numbers in that range and use them to constnucolor.

See Example: MoreColorfulSpirograph

In this case, we choose a color when the mouse is pressed atdusoto use that same color
for all the lines in a given spirograph. We can make our pnogezen more colorful by choosing
a random color each time the mouse is dragged, thereby makicigi ne in our spirograph a
different color.

See Example: CrazyColorfulSpirograph

Dragging Objects

A very common operation in our graphical programming willalve dragging items around the
screen.

Recall that a “drag” involves pressing the mouse on the olgelbe dragged, dragging the mouse
(with the button down) and having that object follow the meap®inter, and finally, “dropping”
the object at the position where the mouse is released.

How might we accomplish this?

1. We need to determine if the mouse is pointing at the objéennt is pressed.
2. We need to move the object to follow the mouse while it igdeal.

3. We need to place the object at its new position when the eisugleased.

CS 120 Introduction to Programming Spring 2012

We'll start with a simple example that will allow us to dragiecte around the window:
See Example: UglyDragABall

Consider the three methods involved in performing the dragyain:

public void onMousePress(Location point) {

if (ball.contains(point)) {
/'l note that we’ ve grabbed the ball and renenber this point
bal | G abbed = true;

In onMousePr ess, we simply check to see if the location of the mouse presssidéthe object
we would like to drag. If so, we setl@ool ean instance variable tor ue.

A bool ean variable is one that can contain only two possible valtesie orf al se.

/'l update | ast Mouse | ocation
public void onMouseDrag(Location point) {

if (ball Gabbed) {
bal | . noveTo(poi nt);

}

While the mouse is being dragged, we check to see if the bogbe#ble ist r ue. If so, we move
the object to follow the mouse.

This also demonstrates a method of our graphics objects we mat yet seen: theoveTo
method. This will take a graphics object that is already @ dhnvas and move its upper left
corner to the givelhocat i on.

public void onMouseRel ease(Location point) {

i f (ball Grabbed) {
bal | . nroveTo(poi nt);
bal | G abbed = fal se;

And now, when the mouse is released, we again check to seehbtiiean i$ r ue. If so, it means
we have been dragging and now need to move the object to itphsdion, and set the boolean

CS 120 Introduction to Programming Spring 2012

back tof al se so we do not attempt to continue dragging this object (at k@atsl the next time
the mouse is pressed on the object).

But this is not a very satisfying “drag” effect. No matter wl@n the object the mouse is pressed,
the object winds up having its upper left corner follow theus® pointer. So when the object first
starts to move, it appears to “jump”.

Fortunately, this is not very difficult to fix. Consider thispnoved version:
See Example: DragABall

We add one more instance variable related to the draggitepda st Mouse that remembers the
most recent mouseocat i on for theonMbusePr ess oronMouseDr ag event.

What does this do for us? Well, if we move the object to be drddnethedifference between
where the mouswas and where the mouss, that object will move by exactly the same amount
as the mouse just moved. This is precisely what we need tewalki more natural “drag” func-
tionality.

Rather than aoveTo in theonMbuseDr ag andonMouseRel ease, we use arove:

bal | . move(poi nt.get X() - |astMuse. get X(),
poi nt.getY() - |astMuse.getY());

Note that we need to retrieve tkendy values from thé.ocat i on valuespoi nt andl ast Mouse,
S0 we can compute the difference in each direction.

Thenove andnoveTo methods can each be used to move objects on the canvas.takes into
account the current location of the object and moves an atrelative to that current location.
nmoveTo does not depend on the current location but instead it mdwveslject to arabsolute
location.

More Complex Dragging

Let’s use this idea of dragging to implement our most intémggprogram so far: one that plays a
simple form of basketball.

See Example: Basketball

This example has many of the same constructs we have seeioyslgy The main thing we
needed to add was a check to see if the ball was in the hoop éstbheing dragged and the mouse
is released. Only then does the player get credit for a basket

Centering Objects

But before we move on, let's make one minor improvement: weémalke the program work for
different sized canvas settings, and we will set a largerrsae and make sure our scoreboard text
is centered horizontally on the screen.

CS 120 Introduction to Programming Spring 2012

See Example: Basketball2

In order to accomplish this, we will first need to see how teedeine, in our program, the size of
the canvas. Fortunately, this is readily available fromeotgjraw with the methods:

canvas. get Hei ght () ;
canvas. get Wdt h();

With this information, we can easily find important pointack as the center of the canvas, or
points a certain percentage of the way down the canvas.

We will use these to place the objects on the screen. This snegarcan remove or replace some
of our named constants. The constants that remain will &tdithe percentage of the way down
from the top of the canvas where we would like to draw the htlpscoreboard, and the ball.

Now, when we create each item that makes up the court, we eatirio compute its position.
We'll put the scoreboard aside for a moment and considertfieshoop and the ball. For each of
these, we would like to draw them centered at a point half veagss the canvas, and at a specified
fraction of the way from the top of the canvas.

However, our object constructors do not specify ¢hter of an object, but rather thepper |eft
corner. This will complicate our calculation just a bit. We need tadfithe center, then subtract
half of the width of the object to find the x-coordinate, anttsact half of the height of the object
to find the y-coordinate.

Next, we consider the scoreboard. The first enhancemenit cestider is how to set the size of
the font;

scor eboar d. set Font Si ze(DI SPLAY_SI ZE) ;

But let’s think about how we set the position correctly to egrdur scoreboard. Each time the
text on the scoreboard changes, the width offtegt object changes, so we need to retrieve that
width and use it to recenter our object each time the textgbésn

We've started to use some more complex mathematical expnss<onsider this one:
canvas. get Hei ght () * BALL_FROM TOP - BALL_SI ZE/ 2

We have threarithmetic operations here, one multiplication (the), one subtraction, and one
division (the/).

How does Java decide which order to do these operations®déeds based on a predetermined
order of operations. For now, we will consider only a small subset: the arithmeperations. The
rule here is simple: the multiplicative operations { , and%which is the modulo operator — used
to compute a remainder) are performed first, from left totrigfhen the additive operations are
performed, from left to right.

CS 120 Introduction to Programming Spring 2012

So in the above, Java will first multiplganvas. get Hei ght () by BALL_FROM.TOP, then
divide BALL _SI ZE by 2, and then subtract the second result from the first.

We can override Java’s default order of operations by phesmting subexpressions. For example,
if we wanted to rewrite the expression

canvas.getWdth()/2 - scoreboard.getWdth()/2
To avoid dividing by two twice (essentially factoring ouettivision by 2), we would have to write

(canvas.getWdth() - scoreboard.getWdth())/2

Doing Math with Colors

Our next example is a simple one, but demonstrates how wereateccustom colors using arith-
metic operations.

See Example: ColorfulSunset

Much of the example is similar to previous ones. We'll justde on how the color of the sun
changes as it sets.

Each time the mouse moves, in addition to moving the sun dowh, lwe reduce the amount
of green used to create ti@I| or of the sun. The color starts out as a bright yellow: red=255,
green=255, blue=0. Then as the sun sets, the intensity ehgsereduced, leading to a smooth
change as the color darkens through shades of orange befmeing red.

Just a couple of items of note here:

e \We use a shorthand for the decrement of our instance vagat@enAnount :
gr eenAnount - - ;
This is a shorthand for
gr eenAnount = greenAnount - 1,

There is also &+ operator we can apply to our variable to increment theirevdly 1. This
is such a common operation that the designers of the langlegeéed to include a special
(shorter) syntax to allow programmers to specify it.

e The example also demonstrates a danger of using arithnpei@tions to compute compo-
nents of aCol or : those valuesnust be in the range 0-255 or Java will generate an error.
Oncegr eenAnount becomes negative, the construction of the @i or will fail and
error messages are generated.

The example has a comment showing how we can add a conditmfi<his problem in
this case.

10

CS 120 Introduction to Programming Spring 2012

Boolean Expressions

Ouri f statements so far have had fairly simple conditions such as:

if (ball.contains(point))
if (colorVvalue < 230)
if (random nt == 2)

However, we sometimes need to check multiple conditioBsolean expressions can help us
specify these conveniently.

Consider this example, very similar to one in the text:
See Example: FourVoting

Here, we want to know which of four quadrants of the screenains a click point. Unlike some
of our previous examples, we do not have graphical objeetsrtiight contain the points — we
need to check based on the coordinates of the click poinedast theonMouseC i ck method
through itsLocat i on formal parameter.

To determine which quadrant was clicked, we need to chetk the x- and y-coordinate. We can
do this with theand operator, indicated b&&.

if (point.getX() < mdX & point.getY() < mdY)

This will evaluate tot r ue only if both poi nt. get X() < m dX andpoint.getY() <
m dy.

The other common boolean expression operators are

e | | , which is theor operator. Its result isr ue if either of its operands evaluatesttoue.
e | —which evaluates to the boolean opposite of its only operand

e arithmetic comparisons:= to test for equality! = to test for inequality, and the inequality
tests:<, <=, >, and>=.

11

