
Computer Science 120
Introduction to Programming
Siena College
Spring 2012

Topic Notes: Dangers of Concurrency

We introduced active objects early in the course as a way of providing objects which behaved
independently of user actions. OurActiveObject class encompassed what are usually termed
threads of control.

Java includes a class namedThread. Rather than presenting you with “raw” Java threads, how-
ever, we provided you with theActiveObject class, which interacted well with ourWindowController
class and provided a number of methods that allowed you to better control threads. Now, you know
almost enough to be able to use Java threads directly, and we encourage you to browse the Java
documentation about threads.

Today, we will discuss complications that arise with threads and provide some indications of how
to handle them.

Interference
We’ve talked about how anActiveObject activates an extra “brain” for your program. What
happens if those brains give your program contradictory messages?

An important class of problems can arise with concurrency when there are several threads that
might try to update the same variable at the same time.

Consider an example of a bank with two ATMs which can be used to deposit and withdraw money.

See Example: ATM1

One of the ATMs will repeatedly withdraw $100 from the account while the other will repeatedly
deposit $100 in the account (see the difference in parameters in the constructors for the ATM’s).
When the user pushes the button, theactionPerformed method repeats the construction and
execution of the ATM objects.

The main items of interest here are thegetBalance andsetBalance methods. They do the
obvious things.

Therunmethod repeatedly deductschange from the account by first executingsharedBank.getBalance()
to get the balance and then executingsharedBank.setBalance(balance+change,ATM ID,change)
to update the balance.

The final balance in the account should be $1000, the same amount started with, as one of the ATM
objects withdraws $100 ten times, while the other deposits $100 ten times. If you run this code
enough, however, you will discover that the answer does not always turn out to be $1000! What
is causing the problems? Look at the program to see if you can determine what is going wrong
before reading further.



CS 120 Introduction to Programming Spring 2012

The error occurs because two different threads (objects of typeActiveObject) are updating the
same variable,balance. Each gets the balance from the bank, adds in its change, and then tells
the bank the new balance. However, it can happen that both ATMs get the balance before either of
them has the opportunity to update the balance.

For example, suppose ATM1 gets the balance of $1000, while ATM2 “simultaneously” gets the
balance of $1000 (they aren’t actually happening simultaneously if there is only one processor,
but for our purposes it can be helpful to think that way). Now ATM1 adds $100 to the balance
and updates the balance to $1100. ATM2 then removes $100 fromthe balance that it originally
got ($1000) and updates the balance to $900. Thus if the interleaving of operations of ATM1 and
ATM2 are such that both get balances before either registersthe new balance, the final balance will
not reflect one of the two operations.

Clearly this is a problem, yet we would like to have the operations of the two ATMs interleaved.
(We could just run ATM1 to conclusion before starting up ATM2, but this does not model the usage
of ATM’s properly.)

We would like to ensure that if ATM1 queries the balance with the intent to change it and set a
new balance, that ATM2 does not read the original balance. Itis when both read the old balance
and both update that one of the transactions is lost. We attempt to remedy this by replacing the
setBalance method with achangeBalance method:

See Example: ATM2

Now rather than having separate methods to get and set the balance, we have a single method which
takes the amount of change and updates the balance. Because the getting and setting are no longer
separated by distinct method calls, the chances of interference are not as great. However there is
still the opportunity of interference between the calculation of the new balance and the update of
the value. We have artificially increased the chances of thisby adding thepause between the two.

Even if we remove that, we reduce the time between the calculation of the old balance and setting
of the new balance, but still allows the (at least theoretical) possibility of interference between the
calculation ofbalance+change and the assignment of that value tobalance. To be absolutely
safe, we must ensure that only one thread at a time can executethe methodchangeBalance.
We can do this in Java by using the keywordsynchronized.

If we attach the keywordsynchronized to methods in a class, then Java will ensure that only
one thread at a time will be executing any of those methods. For example we can label both
getBalance andchangeBalance assynchronized.

See Example: ATM3

Now if a thread associated with one ATM object is executing either of these methods, then no other
thread can execute either of the methods. For example, ifATM1 is executingchangeBalance,
thenATM2 will not be allowed to execute eitherchangeBalance or getBalance. Instead it
will wait until ATM1 has finished executing that method and then execute the desired method. (The
operating system is given the responsibility of schedulingthe threads’ access to the processor.)

A thread executing eitherchangeBalance or getBalance has no impact on another thread’s
attempts at executing any of the non-synchronized methods of the program. Thus the user-interface

2



CS 120 Introduction to Programming Spring 2012

thread can by executing theactionPerformed orstartATMs method whileATM1 is execut-
ing changeBalance.

Because of the use ofsynchronized, neither thread can interfere with the other, ensuring that
the final answer is the correct one. However, there is one disadvantage of using synchronized
methods – they cut down on the amount of concurrency in the system. This may slow down the
execution of the program, as one thread may be waiting for an operation to complete (e.g., a write
to the screen or a read from a file), while another might be ready to do something. The second
thread may be ready to use the processor, but if it is ready to execute a synchronized method and
the other thread is executing a synchronized method of the same object, then it may be blocked
from executing.

This example may seem a bit contrived – we carefully made surethe pause times for the two ATMs
were the same and added a random pause inside the methods thatchange the balance to increase
the chances of interference. However, the interference could happen in each of our cases (except
the one with thesynchronized modifiers) even without the careful attempts to increase the
chances. Has anyone ever had some big program, even maybe a commercial program, crash in an
unexpected and non-reproducable manner? Perhaps a browseror even Windows itself? There’s
a pretty good chance that a lot of those kinds of crashes are the result of concurrency not being
dealt with carefully enough. Most of the time, things are fine– but once in a while just the right
combination of things is happening and there you go. Crash andburn.

There are many other complications involved in the use of concurrency – too many to go into detail
here. Concurrency can be quite challenging, and inattentionto details may result in programs that
don’t work as expected. Most of the programs that we have had you write which involve active
objects have been designed so that no interference is possible. We urge you to worry about the
possibilities of this happening when you use active objects. More advanced Computer Science
courses study concurrency in much more detail, including other problems that may arise and the
techniques to deal with them.

3


