Computer Science 120

Introduction to Programming
SIENAcollege siena College

Computer Science Sprlng 2012

Topic Notes: Dangers of Concurrency

We introduced active objects early in the course as a way @fighng objects which behaved
independently of user actions. O#ct i veObj ect class encompassed what are usually termed
threads of control.

Java includes a class name&ldr ead. Rather than presenting you with “raw” Java threads, how-

ever, we provided you with thct i veCbj ect class, which interacted well with oMy ndowCont r ol | er
class and provided a number of methods that allowed you terintrol threads. Now, you know

almost enough to be able to use Java threads directly, ancheoeigge you to browse the Java
documentation about threads.

Today, we will discuss complications that arise with thieadd provide some indications of how
to handle them.

| nterference

We've talked about how aAct i veCbj ect activates an extra “brain” for your program. What
happens if those brains give your program contradictorysangss?

An important class of problems can arise with concurrencgemthere are several threads that
might try to update the same variable at the same time.

Consider an example of a bank with two ATMs which can be usee@posit and withdraw money.
See Example: ATM1

One of the ATMs will repeatedly withdraw $100 from the accowhile the other will repeatedly
deposit $100 in the account (see the difference in paramgtéhe constructors for the ATM’s).
When the user pushes the button, &8t i onPer f or mred method repeats the construction and
execution of the ATM objects.

The main items of interest here are thet Bal ance andset Bal ance methods. They do the
obvious things.

Ther un method repeatedly deduathange from the account by first executirsfar edBank. get Bal ance(
to get the balance and then executsiitar edBank. set Bal ance(bal ance+change, ATMI D, change)
to update the balance.

The final balance in the account should be $1000, the samerdstanted with, as one of the ATM
objects withdraws $100 ten times, while the other depodi®0%en times. If you run this code
enough, however, you will discover that the answer does Imatys turn out to be $1000! What
is causing the problems? Look at the program to see if you etermiine what is going wrong
before reading further.

CS 120 Introduction to Programming Spring 2012

The error occurs because two different threads (objecigefAct i veQbj ect) are updating the
same variablehal ance. Each gets the balance from the bank, adds in its changehandélls
the bank the new balance. However, it can happen that bothsAJé¥ithe balance before either of
them has the opportunity to update the balance.

For example, suppose ATM1 gets the balance of $1000, whi2ATsimultaneously” gets the

balance of $1000 (they aren’t actually happening simuttasky if there is only one processor,
but for our purposes it can be helpful to think that way). NoWwMY adds $100 to the balance
and updates the balance to $1100. ATM2 then removes $100tfrerhalance that it originally

got ($1000) and updates the balance to $900. Thus if thdeateng of operations of ATM1 and

ATM2 are such that both get balances before either regitensew balance, the final balance will
not reflect one of the two operations.

Clearly this is a problem, yet we would like to have the operatiof the two ATMs interleaved.
(We could just run ATM1 to conclusion before starting up AT\NbRt this does not model the usage
of ATM’s properly.)

We would like to ensure that if ATM1 queries the balance with intent to change it and set a
new balance, that ATM2 does not read the original balancis.vilhen both read the old balance
and both update that one of the transactions is lost. We pttemremedy this by replacing the
set Bal ance method with achangeBal ance method:

See Example: ATM2

Now rather than having separate methods to get and set @nedealwe have a single method which

takes the amount of change and updates the balance. Becaugtthg and setting are no longer

separated by distinct method calls, the chances of intaréer are not as great. However there is
still the opportunity of interference between the caldolabf the new balance and the update of
the value. We have artificially increased the chances obthedding thepause between the two.

Even if we remove that, we reduce the time between the cdioalaf the old balance and setting
of the new balance, but still allows the (at least theor8tpassibility of interference between the
calculation obal ance+change and the assignment of that valudoal ance. To be absolutely
safe, we must ensure that only one thread at a time can extreuteethodchangeBal ance.
We can do this in Java by using the keywarginchr oni zed.

If we attach the keywordynchr oni zed to methods in a class, then Java will ensure that only
one thread at a time will be executing any of those methods. ekample we can label both
get Bal ance andchangeBal ance assynchr oni zed.

See Example: ATM3

Now if a thread associated with one ATM object is execultirigeziof these methods, then no other
thread can execute either of the methods. For examphd,ML is executingchangeBal ance,
thenATM2 will not be allowed to execute eithehangeBal ance or get Bal ance. Instead it
will wait until ATML has finished executing that method and then execute thedesethod. (The
operating system is given the responsibility of schedulinegthreads’ access to the processor.)

A thread executing eitherhangeBal ance or get Bal ance has no impact on another thread’s
attempts at executing any of the non-synchronized methidtie program. Thus the user-interface

2

CS 120 Introduction to Programming Spring 2012

thread can by executing tlaet i onPer f or med or st ar t ATMs method whileATML is execut-
ing changeBal ance.

Because of the use sfynchr oni zed, neither thread can interfere with the other, ensuring that
the final answer is the correct one. However, there is onaldisdage of using synchronized
methods — they cut down on the amount of concurrency in thiesysThis may slow down the
execution of the program, as one thread may be waiting fopanation to complete (e.g., a write
to the screen or a read from a file), while another might beyéadlo something. The second
thread may be ready to use the processor, but if it is readydoute a synchronized method and
the other thread is executing a synchronized method of the s#bject, then it may be blocked
from executing.

This example may seem a bit contrived — we carefully madetberpause times for the two ATMs
were the same and added a random pause inside the methodkahge the balance to increase
the chances of interference. However, the interferencieldmppen in each of our cases (except
the one with thesynchr oni zed modifiers) even without the careful attempts to increase the
chances. Has anyone ever had some big program, even mayberaecdal program, crash in an
unexpected and non-reproducable manner? Perhaps a brawsern Windows itself? There’s

a pretty good chance that a lot of those kinds of crashes areetult of concurrency not being
dealt with carefully enough. Most of the time, things are finleut once in a while just the right
combination of things is happening and there you go. Craslband

There are many other complications involved in the use ofsmency — too many to go into detalil
here. Concurrency can be quite challenging, and inattetidetails may result in programs that
don’t work as expected. Most of the programs that we have loadwrite which involve active
objects have been designed so that no interference is p@s$ie urge you to worry about the
possibilities of this happening when you use active objedere advanced Computer Science
courses study concurrency in much more detail, includitgoproblems that may arise and the
techniques to deal with them.

