Computer Science 120

Introduction to Programming
SIENAcollege siena College

Computer Science Sprlng 2012

Topic Notes: Collections

Our next major topic involves naming collections of items.t Brst, we will look at a loop con-
struct that we will often make use of in that context.

f or Loops

We have use@hi | e loops in a number of contexts, one of which is for countingr &le,
in the falling snow example, we had the followingn method:

i nt snowCount = 0O;

/'l continue creating snow until the maxi mum anount
/'l has been created
whil e (snowCount < MAX SNOW) {

snowCount = snowCount + 1;

new Fal | i ngSnow canvas, snowPi c,

snowCen. next Val ue(), /'l x coordinate

snowGen. next Val ue() *2/ canvas. getWdth()+2); // y spt
pause(FLAKE | NTERVAL) ;

If we carefully examine the loop in the falling snow exampl®ee, we can see that it has the
following structure:

int counter = O;
while (counter < stopVal)
{
/[l do stuff
count er ++;

It turns out that we can use a different construct that |laealithe code dealing with counting so
that it is easier to understand. This construct is callédma loop. You would use it for counting
by saying the following:

CS 120 Introduction to Programming Spring 2012

for (int counter = 0; counter < stopVal; counter++)

{
}

// do stuff - but omt counter++ at end

The code in the parentheses consists of 3 parts; it is notajustndition as in f or whi |l e
statements. The parts are separated by semicolons. Theditss executed once when we first
reach the or loop. Itis used to declare and initialize the counter. Theoad part is a condition,
just as inwhi | e statements. It is evaluated before we enter the loop anaddetxh subsequent
iteration of the loop. It defines the stopping condition foe toop, comparing the counter to the
upper limit. The third part performs an update. It is exedwetheend of each iteration of the
f or loop, just before testing the condition again. It is usedddate the counter.

How would we rewrite the falling snow example to usea loop?
See Example: FallingSnowFor

Essentially we have taken three lines from the abwviel e loop version and combined them into
one line of thef or loop version. Because we included the declaration of theteoumside the
loop (see i nt snowCount ”), it is only available inside the loop. If you try to use ittside of
the loop, Java will claim to have never heard of a variabléwhat name.

Notice how the for localizes the use of the counter. This haslienefits. First, it simplifies the
body of the loop so that it is somewhat easier to understantddldy. More importantly, it becomes
evident, in one line of code, that this is a counting loop.

Other variations

Many variations are possible and we will see them frequethtigughout the remainder of the
course. For example, we coutdunt down instead of up:

for (int countdown = 10; countdown >= 1; countdown--)

{

}
Systemout.println ("Blast off!l");

System out. printl n(count down) ;

Summary of f or loops

The general structure offeor statement is the following:

for (<initialization>, <condition> <update>)

{

<code to repeat>

}

CS 120 Introduction to Programming Spring 2012

e The initialization part is executed only once, when we fiestah thd or loop.
e The condition is executed before each iteration, includegfirst one.

e The update part is executed after each iteration, befotiagethe condition.
When should you usefaor loop instead of a while loop:

e Definitely use for loops when counting!
e Initialization, condition, update all are expressed imtgof the same variable
e The variable is not modified elsewhere in the loop.

e Itis correct to do the update command as the last stateméme inody of the loop.

M otivation for Collections

Sometimes we have a lot of very similar data, and we wouldldo similar things to each datum.
For example, suppose we wanted to extend our “Drag2Shixeshele to have 4 shirts instead of
just 2.

See Example: Drag2Shirts

We could go through the program and everywhere werssShi rt andbl ueShirt, add 2
more variables and 2 more segments of code to deal with thershvts.

See Example: Drag4Shirts

That was not terribly painful, but a bit tedious and error@oNow, what if we wanted to create
10, 20, or 100 shirts to be dragged around the canvas. We't aviaetter way to name the shirts
as a group.

Java and other programming languages provide a number dfanetns to help here. We will
consider two in Java. First, we will look at a Java class daleAr r ayLi st , and later a lower-
level construct common to most modern programming langeafiedarrays. Each allows us to
use one name for an entire collection of objects.

TheJava ArrayLi st Class

Those of you who will go on to take data structures will leaboat a variety of ways that collec-
tions of data can be stored that vary in complexity, flexifaitand efficiency. We will consider just
one of those structures here: ther ayLi st .

ArrayLi st is a class that implements abstract data type provided by the standard Java utility
library.

CS 120 Introduction to Programming Spring 2012

Let’'s see how to use them through an example: we will replag&tnames of Shi rt objects in
the “Drag4Shirts” example with a singhg r ayLi st that holds all 4.

See Example: Drag4ShirtsArrayList

This program has the same functionality, but the 4 variatdethe TShi r t s has been replaced
by a single collection, aAr r ayLi st of TShi rt objects.

We consider each change that was made to the program to dessibeisage of aAr r ayLi st .

e First, if we want to make use of a Java class not in the foldén wur Java files, we need
to tell Java this. Like we have seen for ObjectDraw and taea. am classes, we need to
add an nport statement to the top of our program. In this case,

import java.util.ArraylList;
This allows us to use the class nafer ayLi st in the rest of the file and Java will know

we mean to use the one in thava. uti | package.

e Next, we declare an instance variable for dar ayLi st :
private ArrayLi st<TShirt> shirts;

This looks a little different than any variable declaratwe have seen before. Since an
Arrayli st can be used to hold objects of any type, we need to tell Java typa of
objects will be stored in this particul#dr r ayLi st. In this case, it'sTShirts. So we
place that type inside theand>. This is called aype parameter.

e Like most Java classes, we need to construct an instance ofabs in order use it. This is
done in the first statement of theegi n method:

shirts = new ArrayLi st<TShirt>();

This is much like other constructions we have seen, but wenageed to include the type
parameter so Java will give us &nr ayLi st thatis set up to hold a collection @hi r t
objects.

e TheTShi rt instances are then created, and we need to insert each @®o tlayLi st .
This is done with thedd method:

shirts.add(shirt);

CS 120 Introduction to Programming Spring 2012

This will take theTShi r t namedshi rt and add it to the first available slotintAer ayLi st
namedshi rts.

Note that in this case, we are not requesting any specifigitocavithin the Ar r ayLi st
for the shirt. We will later see that we can be more specifieher

Note also that we as users of tAer ayLi st do not know (though when you take data
structures, you’ll have a pretty good idea) of what’s goingreside theAr r ayLi st to add
the shirt. We just know that it knows how to do it.

When we're done witlbegi n, theAr r ayLi st contains references to¥shi rt objects.

e In theonMousePr ess andonMbuseExi t methods, we need to access ftghi rt ob-
jects within theAr r ayLi st . We do this with theget method:

TShirt shirt = shirts. get(shirtNum;

Here,shi rt Numis a loop index variable that will range from 0 to one less tthennumber
of items in theAr r ayLi st . We know in this case that there are 4 items, but we can get that
information from theAr r ayLi st itself using thesi ze method, as done in tHeor loops:

for (int shirtNum= 0; shirtNum < shirts.size(); shirtNum++)

What we see here is that tie r ayLi st has assigned a number, often callediiaatex,
to eachTShi rt we added to thér r ayLi st, and we can pass that number to thet
method to get back a specifichi rt from theAr r ayLi st.

It turns out that the first item we add is given index 0, the egiven index 1, and so on. If
we later wanted to get at the first one, we could say:

shirts.get(0);

but in many cases (like this one), we will access the itembiwi collection inside a loop,
passing in a loop index to thgeet method.

This is our first example of search operation on a collection — we are looking through each
object in the collection to find one that contains thecat i on. More precisely, this is a
linear search and we will say more about this later.

One of the great things about using a construct likeAanayLi st is that we can extend our
programs to keep track of a much larger number of objectse livant to have 10Shi r t s on the
canvas, we would definitely want to use a collection likeAam ayLi st to keep track of them.

See Example: Drag10Shirts

Here, we also place the creation of th&hi rt s into a loop, but just line them up in a row for
simplicity. If we wanted them to be organized into rows or g& & fixed set of colors, we would
need to use a more complicated loop in biegi n method. (And we will do just that later.)

5

CS 120 Introduction to Programming Spring 2012

If we wanted to create 20 or 50 or 1d&hi rt s, we could do so by changing the loop in the
begi n method and the remainder of the code does not need to change.

ArraylLi st sin Custom Objects

One of the challenges we have seen with constructing cushpeats with any level of complexity
is that we need to have names for all of the graphical objeetsonstruct. When the object
includes large numbers of items, ideally created withinog|@nAr r ayLi st will come in handy
to help keep track of them.

First, we look at a program that doesn’t usrer ayLi st s:
See Example: DrawRoads

This program draws little segments of roads when we clicknbeise. Nothing is new here — we
could have written this a while ago.

But now suppose we want to be able to drag one of these around.

We need to have names for all of the components of the roadesggso we can do things like
move it and check for containment of a point.

See Example: DragRoads
The enhancements to thé ndowCont r ol | er class are all very familiar.

It's in the RoadSegnent class that we make use of &nr ayLi st to hold the center stripes of
our road segment. Notice the same steps: declare a varidthl@mAr r ayLi st type that can
hold objects of the appropriate type, construct it witgw, thenadd entries with the appropriate
types of objects.

In the constructor, we do the construction of the ayLi st , then create the actual stripes.
In thenove method, we loop through the stripes, moving each one.

This is nice, but perhaps we want to combine this functioyalith that of the program where
we could drag around any of 10 shirts. Let's usefamayLi st to keep track o#ll of the road
segments we've created, so we can diag segment, not just the most recently drawn one.

See Example: DragAllRoads

Here, in addition to having aAr r ayLi st to keep track of the components of one of the road
segments, we keep airrayLi st of RoadSegnent objects in theW ndowCont r ol | er
class.

Removing from an Arr ayLi st

We can augment the last example to remove each road segroentlie canvas and from the
ArraylLi st. Aroad segment will be removed if it is being dragged whenrttoeise leaves the
window.

See Example: DragAllIRoadsRemove

CS 120 Introduction to Programming Spring 2012

The new functionality is in thenMbuseExi t method of theDr agAl | RoadsRenove class.

If the dr aggi ng flag is true when the mouse leaves the window, the curremdgged segment
sel ect edSegnent) should be removed. We first remove it from the canvas, theve it from
theAr rayLi st. We also setlr aggi ng back to false, since the object we were just dragging no
longer exists.

First, we will look at the removal from the list, which is donéth the Arr ayLi st’s r enove
method. We pass as a parameter the element we want to renmal/d,iais an element of the
list, it is removed. It is important to note that when we remaw element from aAr r ayLi st
with r enmove, any subsequent entries will be “moved up”. That is, if adightains 5 elements
(in positions numbered 0 through 4) and we remove the eleatgmbsition 2, théAr r ayLi st
implementation of enove will shift the element that was in position 3 into positionaghd the
one that was in position 4 into position 3. This means we cainuse ourf or loop over the
numbers from O tsi ze() - 1 to visit all of our entries. In other words,enove does not leave
a “hole” at the index from which the element was removed.

The newr enoveFr ontCanvas method is mostly like the ones we have seen in previous exam-
ples: to remove the custom object, we remove each of its cagngs. The difference here is that
we need to loop through thér r ayLi st , get and therr enove each element. We also should
remove the individuaFi | | edRect s from theAr r ayLi st , which we do all at once with the

cl ear method.

We can also remove elements from Anr ayLi st by index rather than value. We will see
examples of this soon.

Other ArrayLi st methods

The examples above demonstrated just a few of the capebibfi theAr r ayLi st class: con-
struction,add, get , si ze, renbve, andcl ear.

The full documentation for thér r ayLi st can be found ahtt p: // docs. or acl e. com
j avase/ 6/ docs/ api/javalutil/ArraylList. htn

Here are a couple of additional methods, some of which witheap in later examples.

e cont ai ns — determine if a given object is in the list
e i ndexOF — search for first occurrence of a given object in the list atdrn its index

e set —replace the contents at an index with a new element

A few more examples to bring some of this together:
See Example: MovingFlags

See Example: PongBricks

Java Arrays

CS 120 Introduction to Programming Spring 2012

TheAr rayLi st is a Java class, provided as a standard utility with everg @avironment. But
it is built on top of a more fundamental programming languegestruct called aarray.

In mathematics, we can refer to large groups of numbers gamgle) by attaching subscripts to
names. We can talk about numbers n.,... An array lets us do the same thing with computer
languages.

Suppose we wish to have a group of elements all of which haesTilgi ngAMaJi g and we wish
to call the groug hi ngs. Then we write the declaration ohi ngs as

Thi ngAMaJi g[] things;

The only difference between this and the declaration of glsiitem of typeThi ngAMaJi g is
the occurrence of[*] ” after the type.

Like all other objects, a group of elements needs to be ateate
t hi ngs = new Thi ngAMVAJi g[25] ;

Again, notice the square brackets. The number in parergl{2S¢indicates the maximum number
of elements that there are slots for. We can now refer to iddal elements using subscripts.
However, in programming languages we cannot easily setubgcsipts in a smaller font placed
slightly lower than regular type. As a result we use the uiboms “[] ” to indicate a subscript.
If, as above, we definehi ngs to have 25 elements, they may be referred to as:

things[0], things[1l], ..., things[24]

We start numbering the subscriptsGatand hence the last subscript is one smaller than the total
number of elements. Thus in the example above the subsgogdtem 0 to 24.

One warning: When we Iinitialize an array as above, we onlytersiats for all of the elements,
we do not necessarily fill the slots with elements. Actudhyg default values of the elements of
the array are the same as for instance variables of the sgee lfyThi ngAMAJi g is an object
type, then the initial values of all elementsnisl | , while if it is i nt , then the initial values will
all be0. Thus you will want to be careful to put the appropriate valirethe array before using
them (especially before sending message to them! — thBlid & Poi nt er Except i on waiting

to happen).

In many ways, and array works like &nr ayLi st , but we will see several differences.
Armed with this new construct, let’s revisit the shirt draggprogram to use arrays.
See Example: Drag10Shirts

In this code, we we have a single array nanséd rt s. This array is declared as an instance
variable, constructed at the start of thegi n method, and given values (references to actual
TShi rt s) just after.

CS 120 Introduction to Programming Spring 2012

Then in theonMbusePr ess method, we loop through all of the array entries (as we didipre
ously with anAr r ayLi st) to determine which, if any, has been pressed. FinallgnikbuseExi t ,
we tell all of the shirts to move back to their starting pasis.

Let's see how this differs from th&r r ayLi st version.

e Our instance variable declaration looks a bit different.

e When we construct the array in thegi n method, we need to tell it how many elements
the array will hold (in this case, 10). With th# r ayLi st , we construct a list and we can
add as many things to it as we want. The array can only evertheldumber of elements
we provided when we constructed it.

e When we add items to the array, we need to specify the indexoékpl There is no way to
say “just add it to the end” the way we do wilnr ayLi st s.

e When we access array elements, we use the bracket notatiaucim tire same way we use
theget method of théAr r ayLi st .

In this example, we have used an array to keep track of a tiolfeaf objects on the canvas. We can
also use an array to keep track of the components of a custttals we did withAr r ayLi st s.

An enhancement to this example that shows some of the beokditgays, we draw the t-shirts in
two rows and use a fixed array of colors for the shirts instéadralom colors.

See Example: Drag10ShirtsNicer

A few things to notice here:

e We have an array d@ol or s initialized to 10 pre-defined color names that we’ll usedor
10 t-shirts.

e The construction of the t-shirts takes place in a nestedtoaopake it easier to organize them
into 2 rows of 5 shirts each.

Our next enhancement to this example is to draw and drag dr@@ishirts, now in 4 rows of 5.
See Example: Drag20Shirts

Most of the program works correctly just by changing the gadfithe constanlUM ROWS (yay
constants). But...the array of colors is not large enough.

We account for this by reusing the colors once we've run outis Ts accomplished with some
modulo arithmetic:

shirts[shirtNuni.set Col or(shirtCol ors[shirtNum % shirtColors.|ength]);

CS 120 Introduction to Programming Spring 2012

Another Example
See Example: DragStudents
What you've been waiting for: being the stars of a program.

This is another “drag objects around” example, but this tiheeobjects being dragged are your
pictures.

In this example, we place the objects randomly on the cabwaisake some care to make sure they
do not overlap at all. Notice the helper methmder | apsAny that helps ensure this.

Any image being dragged is also made larger while it's beragded.
Other than that, it's similar to dragging 10 shirts.

Inserting and Removing with Arrays

We have already seen that there is quite a bit to keep trackehwsing arrays, especially when
objects are being added. We need to manage both the size afrhyeand the number of items
it contains. If it fills, we either need to make sure we do nt¢rapt to add another element, or
reconstruct the array with a larger size.

As a wrapup of our initial discussion of arrays, let’s coesitivo more situations and how we need
to deal with them: adding a new item in the middle of an arraygl moving an item from the
end.

For these examples, we will not use graphical objects, justhers. Arrays can store numbers just
as well as they can store references to objects.

Suppose we have an arrayiait large enough to hold 20 numbers.

The array would be declared as an instance variable:
private int[] a;
along with another instance variable indicating the nunafeémt s currently stored im:
private int count;
and constructed and initialized:

a = new int[20];
count = O;

At some point in the prograncount contains 10, meaning that elements 0 through® odntain
meaningful values.

Now, suppose we want to add a new item to the array. So far, weed@ne something like this:

10

CS 120 Introduction to Programming Spring 2012

a[count] = 17;
count ++;

This will put a 17 into element 10, and increment ttwunt to 11.

But suppose that instead, we want to put the 17 into elememicbyéhout overwriting any of the
data currently in the array. Perhaps the array is maintgitie numbers in order from smallest to
largest.

In this case, we'd first need to “move up” all of the elementpasitions 5 through 9 to instead be
in positions 6 through 10, add the 17 to position 5, and therementcount .

If the variablei nser t At contains the position at which we wish to add a new value, laaichtew
value is in the variableal :

for (int i=count; i>insertAt; i--) {
a[i] = a[i-1]

}

a[insertAt] = val;

count ++;

Now, suppose we would like to remove a value in the middletels of “moving up” values to
make space, we need to “move down” the values to fill in the ti@éwould be left by removing
the value.

If the variabler enbveAt contains the index of the value to be removed:

for (int i=renoveAt+l; i<count; i++) {
a[i-1] = ali];
}

count - -;

The loop is only necessary if we wish to maintain relativeeoramong the remaining items in the
array. If that is not important (as is often the case with aapbdical objects), we might simply
write:

a[renoveAt] = a[count-1];
count - -;

In circumstances where we are likely to insert or removetinéomiddle of an array during its life-
time, it usually makes sense to take advantage of the highelkfunctionality of theAr r ayLi st .

Array and Ar rayLi st Summary

The following list summarizes the key differences and saniiies between arrays addr ayLi st s.

11

CS 120 Introduction to Programming Spring 2012

Declaration To declare an array of elements of some t¥pe
T[] ar;

whereT can be any type, including primitive types or Object types.
And to declare a\r r ayLi st that can hold items of typé:

ArraylLi st<T> al;

whereT must be an object type. If we want to store a primitive type,nnest use Java’'s
corresponding object wrappers (elgat eger when we want to store items of typent).

Construction To construct (allocate space for) our arraynaélements of typd:
ar = new T[n];

Once constructed, the array will always have spaceafelements of typd — if we want a
larger or smaller array, we would have to construct a new one.

The array constructed will have the default value for thetygie stored in each entry. For
object types, all entries begin asil | . For primitive number types, they begin as 0. For
bool ean arrays, they begin dsal se.

To construct arr r ayLi st :
al = new ArraylList<T>();

This Arr ayLi st initially does not contain any values. Its size will be detered by the
number of elements we add to it.

Adding an Element To add an element to an array, we have to specify the positiatigh we
wish to add the new element:

ar[i] =t;

This will place the itent at positioni into our array.i must be in the range 0 -1 if we
constructed our array to hawveentries. If there was already some data stored in positjon
it will be overwritten witht .

If we want to add the item to the “end” of the array, that is, fin& unoccupied slot in the
array, we will need an additional variable to keep track eftiamber of currently-occupied
slots. If this is callechSi ze, and we have been careful to make sureaBeze elements
in the array occupy slots 0 througlsi ze-1, we can add the element with:

ar[aSi ze] =t;
aSi ze++;

12

CS 120 Introduction to Programming Spring 2012

With anAr r ayLi st , theadd method takes care of this:
al . add(t);

Retrieving an Element To get an item from an array, we use the same notation. To putaiue
from positioni in the array into some variabte

t = ar[i];
Whereas with thér r ayLi st , we need to call a method:
t = al.get(i);
Visiting All Elements To loop over all elements in the array:
for (int i=0; i<aSize; i++) {
t = ar[i];

/1l do sonething with t
}

and anArr aylLi st ;

for (int i=0; i<al.size(); i++) {
t = al.get(i);
/1 do sonething with t

}

13

