
Computer Science 112
Art & Science of Computer Graphics
The College of Saint Rose

Spring 2016

Topic Notes: Colors and Materials

Colors

We’ve used Ambrosia’s predefined colors and materials, but now it’s time to define our own, as we

study colors and materials more closely next.

Everyone learns in first grade (or so) that the primary colors are red, yellow, and blue:

https://www.youtube.com/watch?v=yu44JRTIxSQ

https://commons.wikimedia.org/wiki/File:Color_mixture.svg

From those primary colors, one can create the secondary colors, tertiary colors, and beyond:



CSC 112 The Art & Science of Computer Graphics Spring 2016

https://commons.wikimedia.org/wiki/File:Color_star-en_(tertiary_names).svg

It turns out that those are the primary colors when mixing paints in art class, but red, green, and

blue are the primary colors of light. Computer monitors (and televisions, etc.) are typically made

of lots of red, green, and blue light sources.

Therefore, colors in Ambrosia (and in much of computer graphics) use the RGB (red-green-blue)

color system.

In Ambrosia, the values for red, green, and blue are specified in the range 0-1. 0 means do not turn

that color on, 1 means turn that color on as bright as possible.

The predefined colors are simple assignments made by the Ambrosia system, so Python knows

what they represent:

black = (0,0,0)

dkGray = (0.25,0.25,0.25)

gray = (0.5,0.5,0.5)

ltGray = (0.75,0.75,0.75)

white = (1,1,1)

red = (1,0,0)

green = (0,1,0)

blue = (0,0,1)

cyan = (0,1,1)

magenta = (1,0,1)

yellow = (1,1,0)

purple = (89/255,17/255,142/255)

We see the primary colors of light here, some shades of gray, and the secondary colors of light,

2



CSC 112 The Art & Science of Computer Graphics Spring 2016

which are mixtures of the primaries: cyan is geen plus blue, magenta is red plus blue, and yellow

is red plus green (what?!).

Other colors we might think about:

ltYellow = (1, 1, .5)

dkBlue = (0, 0, .5)

There are many programs that can be used to visualize the colors specified by different RGB values.

I like this one:

http://www.cs.rit.edu/˜ncs/color/a_spaces.html

Any color we can display has a unique RGB representation.

It’s not always obvious how to create the color we are looking for in the RGB scheme. An alternate

specification is Hue-Saturation-Value (HSV).

Again, we specify a color by three values:

1. Hue: a value in the range 0-360 that specifies the angle on a color wheel

• red is at 0 degrees

• we pass through orange, yellow, then on to...

• green at 120 degrees

• we pass through cyan

• blue is at 240 degrees

• we pass through indigo, violet/magenta...

• and back to red at 360

https://commons.wikimedia.org/wiki/File:RGB_color_circle.png

3



CSC 112 The Art & Science of Computer Graphics Spring 2016

2. Saturation: a value from 0-1 that specifies the amount of the hue color to mix with white

• when sat=1, color is the hue

• when sat=0, color is white

This allows us to make lighter versions of colors by specifying smaller values of the satura-

tion.

3. Value: a value in the range 0-1 that specified the amount of this color that you “add” to black

• when val=1, color is hue+sat

• when val=0, color is black

What does this all mean? Let’s consider a few ranges of values:

• HSV=(0, *, *) gives us a shade of red (ranging from white through the reds, to black)

• HSV=(*, *, 0) is black (hue, sat are irrelevant)

• HSV=(*, 0, 1) is white (again, hue is irrelevant)

(here, * can be replaced by any value in the range 0-1)

And some examples of HSV colors (note that these are not defined by Ambrosia):

HSVRed = (0, 1, 1)

HSVGreen = (120, 1, 1)

HSVWhite = (0, 0, 1)

HSVWhite = (90, 0, 1) # either one!

HSVBlack = (0, 0, 0)

HSVGray = (0, 0, .5)

HSVOrange = (30, 1, 1) # 30 degrees around

HSVBrown = (30, 1, 0.5) # 30 degrees around, darker

HSVPink = (0, .5, 1) # "pastels" have lower saturation

A neat feature of the HSV representation is that averaging two HSV values will produce an HSV

representation of the “average” color.

Ambrosia, however, does not support HSV colors directly. All colors must be in RGB format.

Fortunately, there is an Ambrosia function that will convert an HSV value to its RGB equivalent:

hsv2rgb

For example, hsv2rgb(HSVWhite) returns (0,0,0), the RGB representation of white.

There is also an rgb2hsv but we should note that there are many representations of white, for

example. The function cannot be defined uniquely for all inputs.

4



CSC 112 The Art & Science of Computer Graphics Spring 2016

Materials

We have seen the predefined “plaster” and “plastic” materials provided by Mead:

On the Wiki: PlasterAndPlastic

Next, we’ll see how to create our own materials.

To do this, we create a new object of type Material and specify its attributes. This Material

can then be used for objects we add to our scene.

The attributes we can set for our materials:

• color: the material’s color in RGB. Remember that each component ranges 0-1. Am-

brosia will allow values greater than 1 for the components, but this will result in excessively

“bright” objects that are probably not what you are going for. If you want a bright material,

instead adjust the parameters below.

• ambient: a value in the range 0-1 that specifies how much ambient light illuminates the

material. Note that this value is usually very small, since larger values will make the object

appear to be unnaturally illuminated without regard to light from actual sources. A non-zero

value allows objects that are not illuminated by a direct light source or reflection of light

sources off of other objects, to take on their color.

The ambient value is 0.1 for plastic materials, 0.2 for plaster materials.

Note: unlike in real life, where the ambient light which is reflected by an object can illu-

minate other objects, POVray (and hence, Ambrosia) does not model ambient light in this

way.

• diffuse: a value in the range 0-1 that specifies how much of the incident light is scattered

using the native color of the object. A diffuse index value of 0 means that an object’s color

comes only from ambient light, specularity, transparency, and reflection. A diffuse index

value of 1 (for an opaque object) means that all incident light of colors reflected by the

surface is reflected only in the object’s color.

The diffuse index value is 0.5 for plastic materials, 0.9 for plaster.

• roughness: a value in the range 0 and up, 0 is perfectly smooth, 1 is rough (like a piece

of chalk), higher numbers indicate even more rough surfaces. On smooth surfaces, the angle

of incidence is the same as the angle of reflection. On rough surfaces, the angle of reflection

varies to a degree based on imperfections in the surface. Rough surfaces don’t reflect perfect

images, smooth surfaces do. Realistically, values below 0.05 are not useful.

The roughness is 0.05 for plastic materials, 1 for plaster materials.

• specularity: a value in the range 0-1 that specifies how much incident light from a

source is reflected (as if the surface were reflective), leading to “specular highlights”. Spec-

ular reflection results in, for example, the ability of a glossy paint to reflect some of its

5



CSC 112 The Art & Science of Computer Graphics Spring 2016

incident light. Specular highlights are spots that appear where light reflects directly back

toward the viewer from the source, especially on metallic or “shiny” surfaces.

The specularity is 0 for plaster materials, 0.7 for plastic.

• reflection: a value in the range 0-1 that specified how much reflection of adjacent

objects we see in the surface – 0 is no reflection at all, 1 is a perfect mirror. In most circum-

stances, values up to about 0.1 are sufficient to add realistic reflectivity to non-mirror objects

(such as glass).

The default reflection is 0.

• transparency: a value in the range 0-1 that specifies how much light passes through the

object – 0 is completely opaque, 1 is a completely transparent object (we won’t see it at all).

The default transparency is 0.

• refraction: When light travels at an angle across an interface between two media of

different densities, it bends. The amount of this bend is a ratio called the index of refraction.

For transparent materials, it is important to set the index of refraction to a value greater

than 1, otherwise the object will not be visible. The index of refraction is set with the

refraction message, which takes a value, typically 1 or more. (Water is 1.33, glass is

typically 1.5, and diamond is 2.4. Notice the increase in the refractive index with increased

density.)

The default refraction is 1, meaning the light does not bend.

In addition to the above parameters, Ambrosia provides four material “types” that can be used to

specify a group of appropriate parameters. We have seen plaster and plastic materials, but

there are also mirror and glass types.

These are specified in a Material definition with the type. So for example, to define plaster

with a color of our own specification:

ltBluePlaster = Material()

ltBluePlaster.type("plaster")

ltBluePlaster.color(hsv2rgb((240,.5,1)))

scene.add(sphere, ltBluePlaster)

Specifying one of these types sets material attributes as follows:

• plastic: ambient(0.1).diffuse(0.5).roughness(0.05).specularity(0.7)

• plaster: ambient(0.2).diffuse(0.9).roughness(1).specularity(0)

• mirror: ambient(0).diffuse(0.1).reflection(0.9)

• glass: ambient(0).diffuse(0.1).transparency(0.8).refraction(1.5)

6



CSC 112 The Art & Science of Computer Graphics Spring 2016

The best way to understand these attributes is to experiment with them.

On the Wiki: MaterialsPlayroom

See also the Materials page on the wiki:

http://ascg-wiki.teresco.org/index.php/Materials

This example introduces a new object type: the Plane. Several of you have wanted to use such

an object, which is an infinite two-dimensional plane that exists (and can be rendered) in three-

dimensional space.

The default position of a Plane is along the xz-plane. It can be manipulated with transformations

just like our familiar basic object types.

On the Wiki: DiffuseAndAmbient

On the Wiki: Key

This example demonstrates more custom objects and adds some shiny materials.

It also includes a new transformation: a mirroring. This does exactly what you’d expect: it mirrors

the object to which it is applied across the specified plane (in this case, the xy-plane).

Lenses

We can build a lenses out of a refractive material.

A convex lens is like a maginfying glass, a concave lens is like what you’d find in a peephole on a

door.

See the Wikipedia page about Lens Optics:

http://en.wikipedia.org/wiki/Lens_%28optics%29

On the Wiki: Lenses

In addition to demonstrating refraction, this example introduces a new message we can send to our

image:

image.dimensions(1024, 768)

This changes the size of the generated image. By default, it is 640 × 480.

Designing a Material

There are many ways to go about creating a new Ambrosia Material. Here is one possible

approach.

1. Does your material have a noticable color that is independent of light color?

Yes? This is the diffuse color. Set the RGB color, and diffuse to its intensity.

7



CSC 112 The Art & Science of Computer Graphics Spring 2016

No? The value of diffuse is close to zero. Color is unimportant; set it to white.

2. What happens when you shine a light on the object?

• Does light travel through the object?

Yes? (e.g., glass)

– Set transparency to a value greater than zero. For very clear objects, set this

close to 1; for objects with obvious diffuse color, set it closer to 0.

– Set the refractive index. The ratio of the density of the object over the density

of its environment. The refractive index is typically greater than 1. If you’re

in water, and the object is an air bubble, the value is less than 1 (rare).

No? (e.g., metals)

– The transparency may be left at its default value (0), and the refractive index

will be ignored.

• Does light bounce off the object?

Yes? (e.g., shiny things)

– Specularity and/or reflection are nonzero.

– Can you see a detailed image in the reflection?

Yes? (e.g.,. mirrors, stainless, mylar)

Reflection close to 1, and roughness near 0.

No? (e.g., nonsmooth plastics)

Reflection is small, and the roughness is nearer 1.

– Do you see highlights, bright spots the color of the light (typically white)

Yes? Is it small with obvious boundaries?

If yes, it’s like a metal. Specularity is high (close to 1).

If no, like plastics, specularity is lower (0.5 or less).

No? Specularity is very low. Set it to zero.

No? (e.g., chalk) Set reflection and specularity to zero.

8


