Computer Science 112

The Art & Science of Computer Graphics
The College of Saint Rose
Spring 2013

Topic Notes: Animation

Our next goal is to take our programming techniques and ekfiaam, adding some new Mead
constructs, to create simple animations. Before we can gatitoations, we need to study Bezier
curves.

Bezier Curves
We'll begin with an example, then think about exactly whaegppening.
Mead Example: Si npl eBezi er

ThePri smandLat he classes take an additional messagkeezi er) , that instructs the class
to treat thepr of i | e polygon as a set of control points for one or mBezier curve.

Looking at the images generated 8iynpl eBezi er, we can see that this results in objects with
rounded instead of pointed surfaces.

In the example, we use a couple outline polygons to creatctbyvith theLat he andPri sm
constructs.

To understand what is going on here and how we can use this#tecthe curved surfaces we
want, we will look in detail at Bezier curves.

We will considercubic Bezier curves, at least to start.

These are defined by éntrol points;, we’ll call them A, B, C, and D. Intutitively, the curve
defined by these points is the one traced out by an object¢ladi from A in the direction ofB
and “arriving” atD from the direction ofC.

All points on the Bezier curve always lies within the fig&C D.

More formally and precisely, the points on the Bezier curvecded by pointsA, B, C, andD
are the determined by the formula:

A(1 =) +3B(1 —t)*t +3C(1 — t)t* + Dt?

wheret ranges from 0 to 1.

If you think a bit about the formula, you'll see thatfat 0, it evaluates toA (as all other terms
become 0) and at= 1, it evaluates tad.

We can use a geometric construction to compute specificppomthe Bezier curve. We will build
an “A-frame scaffolding” to do this. To compute the point b turve at, for example at= %:

CSC 112 The Art & Science of Computer Graphics Spring 2013

1. Draw straight lines fromi to B, B to C', andC' to D.

2. Find the points§— of the way fromA to B (call it E), B to C (call it F), andC to D (call it
G).

Draw straight linesv to F' and F' to G.
Find the point% of the way fromE to F' (call it H), F'to G (call it I).

Draw a straight line fron#{ to /.

o o M W

Find the poin% of the way fromH to [(call it J). J is the point on the Bezier curve for
t=1.
3

The Wikipedia article for Bezier curves has some excelleagidims and animations that demon-
strate this construction.

There are a number of web sites that you might find useful toigpBezier curves. Links are on
the lecture page.

Looking back at theSi npl eBezi er example, the polygoout | i ne, when thought of as a
Bezier curve, is really two sets of points, defining two cubiziBecurves:

(define outline
(2to3d ' ((0 0) (25 100) (50 25) (75 0)
(75 0) (50 -25) (25 -100) (0 0))))

When aPr i smor aLat he is sent thg bezi er) message, it will interpret ther of i | e as sets
of 4 Bezier control points.

We can define very complex and interesting curves with thighoe

Some tips about stringing together Bezier curves:

¢ If you want a straight segment frovto D, placeB at A andC at D.

e If youwanttwo adjacent Bezier curves (defined by control fmin B, C, D andA’, B’,C’, D")
to join together smoothly, you need to make sure ihand A’ are the same point, and that
C, D/A', andB’ are colinear. Otherwise, there will be a sharp corndp At'.

Mead Example: Bel |

The bell uses a straight segment, then two curved Bezier sggniaut since we want it to be
smooth, the last two points of the second segment and théswgtoints of the third are colinear.

bl end and nor ph

CSC 112 The Art & Science of Computer Graphics Spring 2013

Mead provides functions that we will use in conjunction wbkzier curves and, soon, to help
guide our animations.

First,bl end.

In its simplest formpl end doeslinear interpolation. If we provide three parameters:

(blend t fromto)

t is expected to be a value from 0-1.tlfis O, the function returnsr om If t is 1, the function
returnst o. If t is some number in between, the function returns a valuestamatbhlend” off r om
andt o, usingt of fromand 1t oft o.

The parameterlsr omandt o may be numbers or lists of numbers (or lists of lists of nurapetc.)
so long as they are the same “shape” and corresponding giemehe lists can be “blended”.

Examples:

> (blend .23 0 100)

23.0

> (blend .75 "(0 0) "(-1 -1))

(-0.75 -0.75)

> (blend .5 red blue) ; RGB colors

(0.5 0 0.5

> (blend .3 (0 1 1) "(240 1 1)) ; HSV colors
(72.0 1.0 1.0

Thenor ph function does a series of blends. In its simplest form, ietatkree parameters as well:

(nmorph n fromto)

In this casepor ph returns a list oh+1 blended values that go froht omtot o.

The first entry of the list is the result ¢fol end 0 from t o) (or simply,fron), the next is
(blend (/ 1.0 n) fromto), thenextis(blend (/ 2.0 n) fromto), onupto
the last, whichig bl end 1 from to), which is simplyt o.

Examples:

> (norph 4 0 100)

(0 25.0 50.0 75.0 100)

> (norph 10 ' (0 0) ' (2 2))
((0 0)

(0.2 0.2

(0.4 0.4)

CSC 112 The Art & Science of Computer Graphics Spring 2013

(0. 6000000000000001 0. 6000000000000001)
(0.8 0.8)

(1.0 1.0)

(1.2000000000000002 1.2000000000000002)
(1.4000000000000001 1.4000000000000001)
(1.6 1.6)

(1.8 1.8)

(2 2))

> (nmorph 5 red bl ue)

((1 00

0.8 0 0.2)

0.6 0 0.4)

0. 3999999999999999 0 0. 6000000000000001)
0. 19999999999999996 0 0. 8)

0

0 1))

AN AN AN SN AN

Remember that passing a valuenofesults inn+1 elements in our resulting list.

We will make extensive use of these, but to start, let's atgrsihe potential for a “time-lapse”
image.

Mead Example: Mor phRepl i cati on

So far, this is just a different way to do something we couldeheasily done with something like
mul ti Add.

We can complicate matters a bit and do some things that mgyhidkier withrmul t i Add style
functions.

The bulk of the work in this example is done in two places:

1. Building our list of positions for our objects with tim@r ph function. In this case:
(morph 19 ' (-200 0 0) (200 0 0))

This gives us 20 positions, the first@200 0 0),thelasta{ 200 0 0), evenly spaced
along the x-axis.

2. Then, we have a functiomddAt Posi t i ons, that works much like ourmul t i Add and
similar functions, but which takes a list of positions wheyedd our objects.

This takes the place of 3 of the parametergunt t i Add —n is determined by the number
of positions in the list, andni t i al Xf or manddel t aXf or mare not needed to compute
positions since we already have a list of positions.

Most ofaddAt Posi t i ons uses familiar ideas and constructs. A couple of things areamel/or
notable:

CSC 112 The Art & Science of Computer Graphics Spring 2013

¢ we have a new conditional expression — we don’t have a numbecompare to O to decide
when we stop. Instead, we want to stop when we've run out oftipns in the list of
positions

To see when we've run out of positions, we can have schemefdkk list is “null” (a
computer word for “empty”) using theul | ? function.

nul | ? returns true if the given list has no entries, false othezwis

e If we're done, we just return the worddone. We could put just about anything here —
remember that in our previous examples of this type, wei@rnedgr oup.

e When adding an object, group our “if false” part inside et *, where we also define (for
convenience), a nanpos for the first element in our position list.

We then tell the group to add a copy of the object, translayeghappropriate amount in the
X, Yy, and z directions.

We then add “the rest” by making a recursive call usiy to get all but the first element
(which we've finished with) from our list of positions.

Mead Example: Mor eMor phRepl i cati on

Thebl end andnor ph functions can also compute cubic Bezier curve positions elfpwovide 5
arguments instead of 3, the values will be interpreted a8, C', andD from the Bezier curves.

Mead Example: Bezi er Mor phRepl i cati on

Finally, these functions can take a set of 3 points, whiclhpvdduce a quadratic Bezier curve — a
parabolic shape.

Mead Example: Quadr at i cMor phRepl i cati on

Animation

Armed with Bezier curves and the ideas of tileend andnor ph functions, it's time to make our
first animation.

Mead Example: Bal | Toss

There’s plenty to digest here. Some key things to notice:

e The new image properties we have not seen before:

— (fileNanme "Bal | Toss") —instead of generating image and movie files based on
your login ID, use this word

— (frameNunber 0) - tell the animation code to start numbering the frames we’ll
generate at 0

— (viewResul t #f) — don’t display all images as they’re generated (as we usuall
do), instead display only the generated movie at the end

5

CSC 112 The Art & Science of Computer Graphics Spring 2013

o \We add the ball to thecene but make sure we have a name for it — we’'ll need this later to
adjust its position between frames

e The functionmoveBal | moves thébal | to a given position

— this will be called when we generate the frames of our movie.

— note the need foabsol ut eXf or m— it makes our task easier here to forget all the
ways in which the ball was previously transformed, and staet from its default size,
position, and orientation — until now, we have always beenguar el at i veXf orm
(without really being aware of it).

e The magic happens in tie | mmessage to owraner a.

— fi | mgenerates a sequence of frames
— here, we generate 51 frames, numbered 0-50
— for each frame, the functiomoveBal | will be called — this is ouadjustment function

— for each call made tooveBal | , its parameter will be determined byvar ph of the
next parameter tbi | m— in this case, a cubic Bezier curve determined by the four
points given

— in general, one parameter will be generated and passed #aphstment function for
each additional parameterfto | m(we’ll see much more interesting examples)

o With the frames generated Wy | m we send the messadpii | dMovi e to paste these
together into an animation!

Ouir first extension to the example:
Mead Example: Cr azyBal | Toss

Instead of just animating the ball, two more objects andrs¢veore change parameters have been
added.

What happens and how?

e The sun is setting and getting dimmer. The setting is cdetidby doing a relative trans-
formation on thesun object every frame (it moves down by 5 every frame) and byrgett
theLi ght’s i nt ensi ty according to the second parametemtmveThi ngs. It varies
linearly from 1 down to .5.

e There is a ball that moves along the ground and changes cidiermotion is in a straight
line and the colors are fully saturated (“bright”) HSV camarying from red, through green
and blue, and back to red. Notice the function that takes an B&@ and returns a new
“plaster” material with that color.

CSC 112 The Art & Science of Computer Graphics Spring 2013

e Thereis a“crazy” cube that spins, changes size, and bouHegs, we add three parameters
to noveThi ngs, one to control the spin, one to control the scaling, and orentrol the
bouncing. It spins around three times, so the rotation goms 0 to 1080. It starts at
50x50x50, expands up to around 100x100x100, back down tot&@sx25x25 and back to
its original 50x50x50. This one is a cubic Bezier.

To get a little crazier, consider adding camera motion tofdhis:
Mead Example: Cr azyBal | TossMoveCaner a

We can string together multipliei | mmessages, which will all generate frames that will be put
into the same movie blyui | dMbvi e.

Mead Example: Bal | TossAr ound
We next build a wind turbine and start it spinning:
Mead Example: W ndTur bi ne

This is a much simpler model — just three cones and a cylif@er.interest is in the grouping and
animation.

e We define & oup calledt hr eeBl ades of (unsurprisingly) three turbine blades, centered
at the origin.

e Thet hr eeBl ades is added to & oup calledt ur bi ne along with a support cylinder.
Thet hr eeBl ades are located above the origin, now.

e The animation is controlled by the adjustment functiat at eBl ade. It does arelative
transformation on thé hr eeBl ades object, rotating about the z-axis some number of
degrees.

The questions: Why is theRot doing the right thing? Shouldn’taRot of an object that is not
located along the z-axis result in the whole collection aidels around the z-axis?

The answer: not in this case! Th&ot is being applied to thehr eeBl ades G oup before it
is added to thé ur bi ne G oup.

The explanation: There are multiple transformations &ghland they are applied successively as
objects are built and grouped.

In this case, we build:

1. abl ade, which is aCone that has been scaled and translated Mead associdtarsa
formation with the definition ofbl ade that represents the composition of the scaling and
translation.

2. at hr eeBl ades, which is aG oup of threebl ades. Each of thesbl ades, when added
to the group, is given a new transformation, specific to thstince, which is composed with

7

CSC 112 The Art & Science of Computer Graphics Spring 2013

thebl ade transformation from above. In this case, the first adaledde has no additional
transformation applied (though a “do nothing” transforimat- theidentity transformation

is stored by Mead), and the second and third each have aomtbiout z stored for their
transformations. Thehr eeBl ades also gets a transformation, which is in this case, the
identity transformation since we have not specified andstamations.

3. at ur bi ne, whichis also & oup, this time consisting of thr eeBl ades and acyl i nder .
Each instance added to the group is also given a new tranafiom- fort hr eeBl ades
it contains the translation and for tieg/| i nder , it is the composition of the two scalings
and the translation.

4. Finally, we add thé ur bi ne to ourscene and a new transformation (the identity, again,
since we have not specified any additional transformatitres) applies to this instance of
thet ur bi ne.

So when, in the ot at eBl ade function, we apply a new transformationtttir eeBl ades, it
is to theGr oup calledt hr eeBl ades, which in turn applies to the specific instance we added to
ourt ur bi ne (which was then translated).

For this reason, theRot is appliedbefore thet r ansl at e that was added during th& oup
construction.

We can see that this particular transformation would applthis same way to all instances of
t ur bi ne that we might add to thecene.

Mead Example: W ndTur bi nes
To get a better understanding of these multiple levels ofsfiamations, consider:
Mead Example: Movi ngCubes

Note that amabsol ut eXf or mreplacesonly the transformation on the specific instance of the
object to which it is applied! This can be hard to keep trackboft can be very helpful when
managing animated scenes.

To see that we can use mathematical functions of parameters tadjustment function as well as
the values themselves, consider this simple example:

Mead Example: Si neBal |

Additional Examples

Here are a few more examples for reference.
Mead Example: Snowi ng

Mead Example: O bi t

