
Computer Science 110
The Art & Science of Computer Graphics
Mount Holyoke College
Spring 2010

Topic Notes: Programming

So far, we have used a very limited subset of the power of DrScheme. Next, we will examine some
Scheme techniques that will help us develop more complex models and, later, animations.

Mathematical Functions
We have defined objects and values, and used some built-in mathematical functions.

We can also definecustom functions.

We can think of these like mathematical functions. Suppose Iwant a mathematical function that
adds two to a value:

f(x) = x + 2

After defining the functionf as above, we would know if someone were to writef(7), that we
should take 7, substitute it forx in the definition off , and evaluate to 9.

We can make a similar definition in Scheme:

(define (add2 x) (+ x 2))

Then, if we want to add 2 to some number, we can also write

(add2 7)

In the definition,add2 is the name of the function,x is its parameter, and(+ x 2) is thebody
or definitionof the function. We are defining the bevavior of thefunction call(add2 x) to be
(+ x 2).

When it encounters the functionadd2, Scheme will recognize it as a function that takes one
parameter. It will then do whatever is defined by the body of the function, replacing instances of
the parameterx with the provided value 7.

In this case, this is somewhat silly. It’s not very hard to type the original addition function. But
functions can be significantly more complicated. A slightlymore complicated function we might
define:



CS 110 The Art & Science of Computer Graphics Spring 2010

(define (hypotenuse a b)
(sqrt (+ (* a a)

(* b b)
)

)
)

Here, we provide two parameters, and have a more complex function definition.

After defininghypotenuse, we can use it in our programs, providing it the two numbers for a
andb that will be plugged in fora andb in the definition of the function.

(hypotenuse 5 12)

We can also build functions to add capabilities to existing functions.

Recall the function(random), which returns a number in the range [0,1).

Suppose we want a function that returns a value in a differentrange.

We can define such a function. The following computes a randomvalue between low and high
(low is possible, high is not).

(define (rand low high)
(+ low (* (random) (- high low))))

Keep this one in mind – we’ll use it later.

List Functions
Some of the things we’ve been dealing with, in particular coordinates and colors, are pairs or triples
of values that are treated by Scheme as alist.

When we’ve specified lists, we’ve had to put a quote mark in front so Scheme doesn’t try to
“evaluate” the list as a function.

We can manipulate these lists in a variety of ways. First, we consider how to break down the
list into components. Scheme provides some very cryptic list-manipulation functions with names
that come from ancient history. Instead of using those, we’ll define some functions with more
meaningful names:

(define (first l) (car l))
(define (rest l) (cdr l))
(define (second l) (cadr l))
(define (third l) (caddr l))

2



CS 110 The Art & Science of Computer Graphics Spring 2010

Note that these are not defined automatically by Scheme or Mead, so you need to include the above
lines in your program if you want to use them.

For example, if we want to get the first (the red) component of the Mead-defined colormagenta:

(first magenta)

Should give us1.

We can define a list of anything:

(define aleast ’(’yankees ’redsox ’orioles ’bluejays ’rays))

And then use the above operations to manipulate this list.

We might also want to build a list out of the results of some other operations. If we want to
construct such a list, we need to use the(list) function.

For example, we might want to write a function that takes an RGBcolor (a list of three numbers)
as its parameter, and returns another color that is a darker or a lighter shade of the given color:

; RGB colors are lists. The following function
; generates a darker RGB color:
(define (darker c)

(list
(/ (first c) 2.0)
(/ (second c) 2.0)
(/ (third c) 2.0)))

; Lighter could be defined as follows:
(define (lighter c)

(list
(- 1 (* 0.5 (- 1 (first c))))
(- 1 (* 0.5 (- 1 (second c))))
(- 1 (* 0.5 (- 1 (third c))))))

See Example:
/home/jteresco/shared/cs110/examples/DarkerLighter

The Conditional Function: if
We can make decisions in our Scheme programs. One way to do this is withif.

(if (cond) (domeiftrue) (domeiffalse))

3



CS 110 The Art & Science of Computer Graphics Spring 2010

See Example:
/home/jteresco/shared/cs110/examples/Countdown

We can also use the conditional to generate functions that create or manipulate Mead objects.

See Example:
/home/jteresco/shared/cs110/examples/SaltShaker

The key idea here is theaddSalt function that uses a conditional to determine if items stillneed
to be added, and if so, adds one thencalls itself to add the rest.

Note that we cantell objects likeGroups just like we cantell thescene or thecamera.

We can use the function we developed in the previous example for multiple purposes:

See Example:
/home/jteresco/shared/cs110/examples/SaltAndPepper

In this case, we have two different types of objects and two different groups, but as use the same
addSalt function to add the objects to the group.

Next, we make an even more general-purpose function – one that takes a list of objects that we
wish to add, selecting each randomly.

See Example:
/home/jteresco/shared/cs110/examples/SpiceMix

Some things to note about this example:

• we define several types of objects and then package them up in alist to send them to the
addSpices function

• when it’s time to add one of the objects to our group, we selectan entry from the list at
random, using some new techniques:

1. thelength function to get the number of entries in a list

2. the new form of therandom function that takes an integer parametern that results in
a random integer (whole number) value in the range 0 ton-1

3. the function (defined in this program)nth to retrieve thenth entry of a list

Adding Multiple Objects
We sometimes want to add multiple objects in precise positions rather than randomly. As an
example of this, we’ll create a bunch of doughnuts.

First, to make the doughnut shape, we’ll use a new Mead objecttype: theTorus.

When creating aTorus, we need to specify the dimensions. In this case, it’s the radius of the
cross section of the torus, and the radius of the circle traced out by the center of the cross section.

4



CS 110 The Art & Science of Computer Graphics Spring 2010

We set these by sending messages when we create ourTorus object:

(object t Torus
(major 50)
(minor 20)

)

See Example:
/home/jteresco/shared/cs110/examples/Doughnuts

With our doughnut object defined, we now see how to add severalof them to the scene in a fixed
pattern.

The key function we will define is one that has a lot of flexibility in adding multiple objects:

(define (multiAdd n obj group initialXform deltaXform)
(if (<= n 0) group ; return the group, if nothing to be added

(begin ; if something, add one, then the rest
(tell group

(add obj initialXform)
)

(multiAdd (- n 1) obj group
(compose initialXform deltaXform)
deltaXform)

)
)

)

We see a typical usage of this in theDoughnuts example:

(multiAdd numDoughnuts doughnut scene
(translate (- (* (/ numDoughnuts 2) doughnutSpacing))

0 0)
(translate doughnutSpacing 0 0))

The parameters to themultiAdd function are defined as follows:

• n – the number of copies of the object to add

• obj – the object being added multiple times

• group – the group to which the items are being added (often aGroup object, like the
scene)

5



CS 110 The Art & Science of Computer Graphics Spring 2010

• initialXform – a transformation to be applied toobj to put the first instance that is
being added into its correct location, orientation, and size

• deltaXform – a transformation that is applied to each successive objectbefore it is added

In this example, we add a “row” of doughnuts to the scene.

We can extend this idea, using themultiAdd function twice, to add lots of rows of doughnuts.

See Example:
/home/jteresco/shared/cs110/examples/MoreDoughnuts

Combining Randomization with the mulitAdd Idea

Suppose we want to create a randomly-coloredMaterial for each item in a group being added.

See Example:
/home/jteresco/shared/cs110/examples/RandomColorMarbles

Here, we see a modified version of themultiAdd function, which we callrandomMatAdd. In
addition to adding a group of objects as we saw inmultiAdd, it creates a random color value and
uses that to construct a newMaterial for use with each object.

(define (randomMatAdd n obj group initialXform deltaXform)
(if (<= n 0) group

(let* ([m (new Material)]
; to avoid too many dark and light colors
; and to avoid the grays completely, we’ll
; generate a color as an HSV with a random
; hue, but saturation and value both of 1.
[c (hsv2rgb (list (rand 0 360) 1 1))]
)

; now we can give our material the properties we want
(tell m

(color c)
(type ’plastic)
)

; add one instance of our object to the group, but
; also specify our brand new material
(tell group (add obj initialXform m))
; now add the other n-1 copies
(randomMatAdd (- n 1) obj group

(compose initialXform deltaXform)
deltaXform)

)
)

)

6



CS 110 The Art & Science of Computer Graphics Spring 2010

The basic structure of our function is very similar tomultiAdd, and it takes the same parameters.

The difference comes in when it’s time to add the object. Rather than wrapping our statements for
the “n > 0” case in abegin, we wrap them in a new function,let*. Thelet* construct works
like begin, but it takes an extra parameter where we can specify a list of“local” names that we
can use throughout the remainder of thelet*. This is a lot like usingdefine, except that we
don’t need to worry about overwriting names defined outside of our function.

In this case, we’ll define two names:m which will be ourMaterial, andc, which will be our
RGB color to use in the construction of theMaterial.

When wedeclarethe namem, we use the name to refer to a newMaterial, but one to which we
have not yet assigned any properties. We do that below, when we tell m those properties: we
give it a color of the randomly-generated colorc, and use the type’plastic.

Then, when we add it to ourgroup, we specify the materialm as part of theadd message.

We can take this a little further and randomize more properties of theMaterals.

See Example:
/home/jteresco/shared/cs110/examples/RandomMaterialMarbles

More Repetition Functions

The next two examples are building stacks of poker chips. Like a stack of poker chips in real life,
the chips are not perfectly aligned on top of each other.

We first use a very basic poker chip, a squashed cylinder, and focus on the slightly randomized
stacking.

See Example:
/home/jteresco/shared/cs110/examples/PokerChipStack

The key here is theimperfectStack function, described in detail in the comment near its
definition in the example.

With the imperfect stack of very boring poker chips taken care of, we can think about how to make
a more realistic poker chip. To do this, we’ll use themultiAdd function from before in a different
way – we’ll use it to carve some little grooves in our chips.

See Example:
/home/jteresco/shared/cs110/examples/FancyPokerChipStack

7


