
Computer Science 110
The Art & Science of Computer Graphics
Mount Holyoke College
Spring 2010

Topic Notes: Advanced Mead Functionality

The loft Function
We next consider a generalization of theextrude function, called aloft. A loft operation is
basically a multi-step extrude, where we specify a series ofcross-sections of the model, and the
loft connects them up pairwise with extrudes.

See Example:
/home/jteresco/shared/cs110/examples/LoftedSpring

Here, we construct a spiral spring using a loft. To loft a material acrossn cross sections we would
specify:

(loft xSect1 xSect2 xSect3...xSectn)

where eachxSect is a polygon in three-dimensional space.

The return is the lofted object (aMesh) that covers the cross sections. The ends are capped with
the polygons as described byxSect1 andxSectn. We can use the resulting mesh just like we
use meshes construted by other means.

However, it is often more convenient to define a list of cross sections, such as:

(define frame (list xSect1 xSect2 xSect3...xSectn))

To use this list as the set of parameters toloft, we essentially need to remove all of the items
from that list and place them as parameters. Fortunately, this is a common operation and can be
done using Scheme’sapply function:

(apply loft frame)

The result of theapply is to take the list specified as its second parameter (frame) and use those
as parameters to a call to its first parameter (loft).

For this specific example, we will build up our list of cross sections using a recursive function rem-
iniscent ofmultiAdd. Here, the functionmultigon take a polygon and transforms it (initially
with initXform and then successively withdelXform) into a list ofn copies that, ideally, form
the frame of the object we wish to construct.



CS 110 The Art & Science of Computer Graphics Spring 2010

Note that we are building and returning a list. In the base case (zero polygons remaining to be
added to the frame) we simply return an empty list. The ultimate list is constructed, one polygon
at a time, using thecons function. This takes a polygon (which becomes thecar of our list) and
a recursively constructed remainder of the frame (which becomes thecdr of our list).

Now, we need to constructing a cross section for our spring. Our cross section is a flat rectangle,
with the hope that the spring looks something like a slinky.

(define springXsect
(2to3d ’((-10 -1) (10 -1) (10 1) (-10 1))))

We then usemultigon to build the frame (springFrame) that we loft to form one “round”
of the spring (springLoop), then add multiple rounds (using our originalmultiAdd) to build
up the full spring (ourSpring). Notice that each round of the spring rises 36 units, so each
successive round must be translated up by that amount.

This example goes a step further by doing a simple animation of the spring in motion. (Can you
see the flaw in the approach taken?)

Atmospherics
POVray, and hence Mead, has the capability to add atmospheric effects: fog.

In Mead, atmospherics are controlled by messages sent to theImage class.

There are three messages you can send to yourimage to control fog:

• (fog) – turns on fog

• (fogAttenuation n) – sets the density of the fog, the default is 100 (which is pretty
dense), lower numbers are more dense

• (fogColor rgb) – sets the color of the fog to the given RGB color, the default iswhite

Note: image quality must be set to 10 or higher, or fog will notbe rendered.

This is demonstrated in a simple example:

See Example:
/home/jteresco/shared/cs110/examples/Fog

One other item of interest in this example is the use of amultiAdd within amultiAdd, taking
advantage of the fact that the innermultiAdd returns aGroup that we can use as the items to be
added by the outermultiAdd.

2


