
Computer Science 110
The Art & Science of Computer Graphics
Mount Holyoke College
Spring 2008

Topic Notes: Patch Meshes

When you can’t get an interesting shape you want using simplertools, you might need apatch
mesh.

We construct it with a list of 16 points.

The patch is a quadrilateral in a very general sense – it is defined by 4 sides but the sides can be
curved.

The points will define the surface we wish to model. The corners are nailed down and are the only
ones we know for sure where they are.

We then specify a Bezier curve on each of the 4 sides of our quadrilateral.

These control points will get the edges to look the way we want.

We blend them into a surface with 4 interior control points that define 4 “internal” Bezier curves.

We can think of the points arranged as follows:

0--1--2--3
| | | |
4--5--6--7
| | | |
8--9--A--B
| | | |
C--D--E--F

We specify them in this order in the Scheme code.

For example, we can define a square patch:

See Example:
/home/jteresco/shared/cs110/examples/PatchMesh

We can adjust some of the control points to see what happens.

Note that we can keep the patches the same on corresponding edges aligned, allowing the possi-
bility of “sewing together” a bunch of patches to get the verycomplex objects we want.

Note that a patch mesh is not a perfectly curved surface – it isapproximated by a collection of
rectangles. The number of rectangles is determined by therefinement levelof the patch mesh.

• by default, the refinement level is 3

CS 110 The Art & Science of Computer Graphics Spring 2008

• you may wish to use lower refinement levels when rendering images as you develop your
scene – it will look less smooth but will render much more quickly

• you may wish to use higher refinement levels to render final images – at the cost of a longer
rendering time

To change the refinement level of aPatchMesh, send it therefinement message:

(object m PatchMesh
(addPatch ...)
(refinement 5)

)

Splitting Bezier Curves

We might also think about taking part of a patch and modeling it in more detail (like a quadtree
type decomposition).

We need to be able to break a spline into smaller splines to be able to do this.

Go back to consider the Bezier curve construction from scaffoldings.

We’d like to be able to split it. So take the definition of one Bezier curve (4 control pointsa c0
c1 b) and a percentage of the wayp through the curve to split it.

Our return should be a list of two sets of control points for Bezier curves that when put together
form the original Bezier curve.

We will return the values of the control points for our split curves, called(a d0 d1 pt) and
(pt e0 e1 b).

(define (splitBezier p a c0 c1 b)
(let* ([d0 (blend p a c0)] ; calculate p% from a to c0

[m (blend p c0 c1)] ; calculate p% from c0 to c1
[e1 (blend p c1 b)] ; calculate p% from c1 to b
[d1 (blend p d0 m)] ; calculate p% from d0 to m
[e0 (blend p m e1)]
[pt (blend p d1 e0)])
(list (list a d0 d1 pt)

(list pt e0 e1 b)
)

)
)

We can use this to subdivide a patch and replace parts of it with 4 more detailed patches.

This is also useful for defining Bezier paths for other purposes, particularly when used to guide
animations.

2

