
Computer Science 110
The Art & Science of Computer Graphics
Mount Holyoke College
Spring 2008

Topic Notes: Animation

Our next goal is to take our programming techniques and expand them, adding some new Mead
constructs, to create simple animations. Before we can get toanimations, we need to study Bezier
curves.

Bezier Curves
We’ll begin with an example, then think about exactly what’shappening.

See Example:
/home/jteresco/shared/cs110/examples/SimpleBezier

ThePrism andLathe classes take an additional message:(bezier), that instructs the class
to treat theprofile polygon as a set of control points for one or moreBezier curve.

Looking at the images generated bySimpleBezier, we can see that this results in objects with
rounded instead of pointed surfaces.

In the example, we use a couple outline polygons to create objects with theLathe andPrism
constructs.

To understand what is going on here and how we can use this to create the curved surfaces we
want, we will look in detail at Bezier curves.

We will considercubic Bezier curves, at least to start.

These are defined by 4control points; we’ll call them A, B, C, andD. Intutitively, the curve
defined by these points is the one traced out by an object “launched” fromA in the direction ofB
and “arriving” atD from the direction ofC.

All points on the Bezier curve always lies within the figureABCD.

More formally and precisely, the points on the Bezier curve specified by pointsA, B, C, andD
are the determined by the formula:

A(1 − t)3 + 3B(1 − t)2t + 3C(1 − t)t2 + Dt3

wheret ranges from 0 to 1.

If you think a bit about the formula, you’ll see that att = 0, it evaluates toA (as all other terms
become 0) and att = 1, it evaluates toD.

We can use a geometric construction to compute specific points on the Bezier curve. We will build
an “A-frame scaffolding” to do this. To compute the point on the curve at, for example att = 1

3
:



CS 110 The Art & Science of Computer Graphics Spring 2008

1. Draw straight lines fromA to B, B to C, andC to D.

2. Find the points1
3

of the way fromA to B (call it E), B to C (call it F ), andC to D (call it
G).

3. Draw straight linesE to F andF to G.

4. Find the points1
3

of the way fromE to F (call it H), F to G (call it I).

5. Draw a straight line fromH to I.

6. Find the point1
3

of the way fromH to I (call it J). J is the point on the Bezier curve for
t = 1

3
.

The Wikipedia article for Bezier curves has some excellent diagrams and animations that demon-
strate this construction.

There are a number of web sites that you might find useful to specify Bezier curves. Links are on
the lecture page.

Looking back at theSimpleBezier example, the polygonoutline, when thought of as a
Bezier curve, is really two sets of points, defining two cubic Bezier curves:

(define outline
(2to3d ’((0 0) (25 100) (50 25) (75 0)

(75 0) (50 -25) (25 -100) (0 0))))

When aPrism or aLathe is sent the(bezier) message, it will interpret theprofile as sets
of 4 Bezier control points.

We can define very complex and interesting curves with this method.

Some tips about stringing together Bezier curves:

• If you want a straight segment fromA to D, placeB atA andC atD.

• If you want two adjacent Bezier curves (defined by control pointsA,B,C,D andA′, B′, C ′, D′)
to join together smoothly, you need to make sure thatD andA′ are the same point, and that
C, D/A′, andB′ are colinear. Otherwise, there will be a sharp corner atD/A′.

See Example:
/home/jteresco/shared/cs110/examples/Bell

The bell uses a straight segment, then two curved Bezier segments, but since we want it to be
smooth, the last two points of the second segment and the firsttwo points of the third are colinear.

blend and morph

2



CS 110 The Art & Science of Computer Graphics Spring 2008

Mead provides functions that we will use in conjunction withBezier curves and, soon, to help
guide our animations.

First,blend.

In its simplest form,blend doeslinear interpolation. If we provide three parameters:

(blend t from to)

t is expected to be a value from 0-1. Ift is 0, the function returnsfrom. If t is 1, the function
returnsto. If t is some number in between, the function returns a value that is a “blend” offrom
andto, usingt of from and 1-t of to.

The parametersfrom andtomay be numbers or lists of numbers (or lists of lists of numbers, etc.)
so long as they are the same “shape” and corresponding elements in the lists can be “blended”.

Examples:

> (blend .23 0 100)
23.0
> (blend .75 ’(0 0) ’(-1 -1))
(-0.75 -0.75)
> (blend .5 red blue) ; RGB colors
(0.5 0 0.5)
> (blend .3 ’(0 1 1) ’(240 1 1)) ; HSV colors
(72.0 1.0 1.0)

Themorph function does a series of blends. In its simplest form, it takes three parameters as well:

(morph n from to)

In this case,morph returns a list ofn+1 blended values that go fromfrom to to.

The first entry of the list is the result of(blend 0 from to) (or simply,from), the next is
(blend (/ 1.0 n) from to), the next is(blend (/ 2.0 n) from to), on up to
the last, which is(blend 1 from to), which is simplyto.

Examples:

> (morph 4 0 100)
(0 25.0 50.0 75.0 100)
> (morph 10 ’(0 0) ’(2 2))
((0 0)
(0.2 0.2)
(0.4 0.4)

3



CS 110 The Art & Science of Computer Graphics Spring 2008

(0.6000000000000001 0.6000000000000001)
(0.8 0.8)
(1.0 1.0)
(1.2000000000000002 1.2000000000000002)
(1.4000000000000001 1.4000000000000001)
(1.6 1.6)
(1.8 1.8)
(2 2))
> (morph 5 red blue)
((1 0 0)
(0.8 0 0.2)
(0.6 0 0.4)
(0.3999999999999999 0 0.6000000000000001)
(0.19999999999999996 0 0.8)
(0 0 1))
>

Remember that passing a value ofn results inn+1 elements in our resulting list.

We will make extensive use of these, but to start, let’s consider the potential for a “time-lapse”
image.

See Example:
/home/jteresco/shared/cs110/examples/MorphReplication

So far, this is just a different way to do something we could have easily done with something like
multiAdd.

We can complicate matters a bit and do some things that might be trickier withmultiAdd style
functions.

The bulk of the work in this example is done in two places:

1. Building our list of positions for our objects with themorph function. In this case:

(morph 19 ’(-200 0 0) ’(200 0 0))

This gives us 20 positions, the first at(-200 0 0), the last at(200 0 0), evenly spaced
along the x-axis.

2. Then, we have a functionaddAtPositions, that works much like ourmultiAdd and
similar functions, but which takes a list of positions whereto add our objects.

This takes the place of 3 of the parameters inmultiAdd – n is determined by the number
of positions in the list, andinitialXform anddeltaXform are not needed to compute
positions since we already have a list of positions.

4



CS 110 The Art & Science of Computer Graphics Spring 2008

Most ofaddAtPositions uses familiar ideas and constructs. A couple of things are new and/or
notable:

• we have a new conditional expression – we don’t have a numbern to compare to 0 to decide
when we stop. Instead, we want to stop when we’ve run out of positions in the list of
positions

To see when we’ve run out of positions, we can have scheme ask if the list is “null” (a
computer word for “empty”) using thenull? function.

null? returns true if the given list has no entries, false otherwise.

• If we’re done, we just return the word’done. We could put just about anything here —
remember that in our previous examples of this type, we’ve returnedgroup.

• When adding an object, group our “if false” part inside alet*, where we also define (for
convenience), a namepos for the first element in our position list.

We then tell the group to add a copy of the object, translated by an appropriate amount in the
x, y, and z directions.

We then add “the rest” by making a recursive call usingcdr to get all but the first element
(which we’ve finished with) from our list of positions.

See Example:
/home/jteresco/shared/cs110/examples/MoreMorphReplication

Theblend andmorph functions can also compute cubic Bezier curve positions. If we provide 5
arguments instead of 3, the values will be interpreted asA, B, C, andD from the Bezier curves.

See Example:
/home/jteresco/shared/cs110/examples/BezierMorphReplication

Finally, these functions can take a set of 3 points, which will produce a quadratic Bezier curve – a
parabolic shape.

See Example:
/home/jteresco/shared/cs110/examples/QuadraticMorphReplication

Animation
Armed with Bezier curves and the ideas of theblend andmorph functions, it’s time to make our
first animation.

See Example:
/home/jteresco/shared/cs110/examples/BallToss

There’s plenty to digest here. Some key things to notice:

• The new image properties we have not seen before:

5



CS 110 The Art & Science of Computer Graphics Spring 2008

– (fileName "BallToss") – instead of generating image and movie files based on
your login ID, use this word

– (frameNumber 0) – tell the animation code to start numbering the frames we’ll
generate at 0

– (viewResult #f) – don’t display all images as they’re generated (as we usually
do), instead display only the generated movie at the end

• We add the ball to thescene but make sure we have a name for it – we’ll need this later to
adjust its position between frames

• The functionmoveBall moves theball to a given position

– this will be called when we generate the frames of our movie.

– note the need forabsoluteXform – it makes our task easier here to forget all the
ways in which the ball was previously transformed, and startover from its default size,
position, and orientation – until now, we have always been using arelativeXform
(without really being aware of it).

• The magic happens in thefilm message to ourcamera.

– film generates a sequence of frames

– here, we generate 51 frames, numbered 0-50

– for each frame, the functionmoveBall will be called – this is ouradjustment function

– for each call made tomoveBall, its parameter will be determined by amorph of the
next parameter tofilm – in this case, a cubic Bezier curve determined by the four
points given

– in general, one parameter will be generated and passed to theadjustment function for
each additional parameter tofilm (we’ll see much more interesting examples)

• With the frames generated byfilm, we send the messagebuildMovie to paste these
together into an animation!

Our first extension to the example:

See Example:
/home/jteresco/shared/cs110/examples/CrazyBallToss

Instead of just animating the ball, two more objects and several more change parameters have been
added.

What happens and how?

• The sun is setting and getting dimmer. The setting is controlled by doing a relative trans-
formation on thesun object every frame (it moves down by 5 every frame) and by setting
theLight’s intensity according to the second parameter tomoveThings. It varies
linearly from 1 down to .5.

6



CS 110 The Art & Science of Computer Graphics Spring 2008

• There is a ball that moves along the ground and changes color.The motion is in a straight
line and the colors are fully saturated (“bright”) HSV colors varying from red, through green
and blue, and back to red. Notice the function that takes an RGBcolor and returns a new
“plaster” material with that color.

• There is a “crazy” cube that spins, changes size, and bounces. Here, we add three parameters
to moveThings, one to control the spin, one to control the scaling, and one to control the
bouncing. It spins around three times, so the rotation goes from 0 to 1080. It starts at
50x50x50, expands up to around 100x100x100, back down to about 25x25x25 and back to
its original 50x50x50. This one is a cubic Bezier.

To get a little crazier, consider adding camera motion to allof this:

See Example:
/home/jteresco/shared/cs110/examples/CrazyBallTossMoveCamera

We can string together multiplefilm messages, which will all generate frames that will be put
into the same movie bybuildMovie.

See Example:
/home/jteresco/shared/cs110/examples/BallTossAround

We next build a wind turbine and start it spinning:

See Example:
/home/jteresco/shared/cs110/examples/WindTurbine

This is a much simpler model – just three cones and a cylinder.Our interest is in the grouping and
animation.

• We define aGroup calledthreeBlades of (unsurprisingly) three turbine blades, centered
at the origin.

• ThethreeBlades is added to aGroup calledturbine along with a support cylinder.
ThethreeBlades are located above the origin, now.

• The animation is controlled by the adjustment functionrotateBlade. It does arelative
transformation on thethreeBlades object, rotating about the z-axis some number of
degrees.

The questions: Why is thezRot doing the right thing? Shouldn’t azRot of an object that is not
located along the z-axis result in the whole collection of blades around the z-axis?

The answer: not in this case! ThezRot is being applied to thethreeBlades Group before it
is added to theturbine Group.

The explanation: There are multiple transformations applied, and they are applied successively as
objects are built and grouped.

In this case, we build:

7



CS 110 The Art & Science of Computer Graphics Spring 2008

1. ablade, which is aCone that has been scaled and translated Mead associates atrans-
formation with the definition ofblade that represents the composition of the scaling and
translation.

2. athreeBlades, which is aGroup of threeblades. Each of theseblades, when added
to the group, is given a new transformation, specific to that instance, which is composed with
theblade transformation from above. In this case, the first addedblade has no additional
transformation applied (though a “do nothing” transformation – theidentity transformation
is stored by Mead), and the second and third each have a rotation about z stored for their
transformations. ThethreeBlades also gets a transformation, which is in this case, the
identity transformation since we have not specified and transformations.

3. aturbine, which is also aGroup, this time consisting of athreeBlades and acylinder.
Each instance added to the group is also given a new transformation – forthreeBlades
it contains the translation and for thecylinder, it is the composition of the two scalings
and the translation.

4. Finally, we add theturbine to ourscene and a new transformation (the identity, again,
since we have not specified any additional transformations)that applies to this instance of
theturbine.

So when, in therotateBlade function, we apply a new transformation tothreeBlades, it
is to theGroup calledthreeBlades, which in turn applies to the specific instance we added to
ourturbine (which was then translated).

For this reason, thezRot is appliedbefore thetranslate that was added during theGroup
construction.

We can see that this particular transformation would apply in this same way to all instances of
turbine that we might add to thescene.

See Example:
/home/jteresco/shared/cs110/examples/WindTurbines

To get a better understanding of these multiple levels of transformations, consider:

See Example:
/home/jteresco/shared/cs110/examples/MovingCubes

Note that anabsoluteXform replacesonly the transformation on the specific instance of the
object to which it is applied! This can be hard to keep track of, but can be very helpful when
managing animated scenes.

To see that we can use mathematical functions of parameters to our adjustment function as well as
the values themselves, consider this simple example:

See Example:
/home/jteresco/shared/cs110/examples/SineBall

8


