
Computer Science 010
Introduction to Computer Applications
Siena College
Fall 2010

Topic Notes: Von Neumann Architecture

Architecture Basics
Modern computers use thevonNeumann architecture.

Idea: a set of instructions and a loop:

1. Fetch an instruction

2. Update next instruction location

3. Decode the instruction

4. Execute the instruction

5. GOTO 1

Basic picture of the system:

(microcode)

scratchpad

ALU:
arithmetic

logic
unit

Microsequencer
(BRAIN!)

control
store

The ALU knows how to do some set of arithmetic and logical operations on values in the scratch-
pad.

Usually the scratchpad is made up of a set ofregisters.

The micro-sequencer “brain” controls what the ALU reads from the scratchpad and where it might
put results, and when.



CSIS 010 Introduction to Computer Applications Fall 2010

We will not be concerned about the details of the micro-sequencer.

This is what makes up thecentral processing unit (CPU).

We can expand this idea a bit to include memory and other devices.

other devices...

scratchpad

ALU:
arithmetic

logic
unit

Microsequencer
(BRAIN!)

control
store

(microcode)

CPU
Chip

Memory

Address Bus

Data Bus

lots of pins

mouse

The CPU interacts with memory and other devices onbuses.

These buses are just wires that carry the electrical signalsthat represent the data.

If you dig deep down into any modern computer you use, it boilsdown to this basic process.

The SIENAVAC
The study of a real architecture would go beyond the scope of this course, but we can get the
idea by considering a simple hypothetical computer we’ll call the SIENAVAC, which stands for

2



CSIS 010 Introduction to Computer Applications Fall 2010

“SIENA’s Very AncientComputer”.1

Note that this name is a play on “UNIVAC”, which was the name of many of the earliest commer-
cial computers. There, it was short for “UNIVersalAutomaticComputer”.

Before we can continue, we need to specify some rules about howSIENAVAC works.

We need to know the set of instructions that SIENAVAC can execute. It has only 8, and we will
use 3-bit binary codes to represent the 8 operations.

000 HALT
001 LOAD
010 STORE
011 ADD
100 SUBTRACT
101 MULTIPLY
110 DIVIDE
111 JUMPIFZERO

Like other computers in the earliest days of computing, SIENAVAC contains a main panel of
lights. When these computers ran programs, those lights could tell a trained observer exactly what
was happening inside the system at the time. What these lightswere showing were the current
values in the various computer’s registers. These registers were used to hold arithmetic operation
results, current program address and operation-code values and any other values that were vital to
the computer’s operation. Today’s computers all have thesesame types of registers, but computer
designers no longer feel it is necessary to display them in lights. Compared to the computers of
yesteryear, today’s computers have a very boring appearance without those light displays!

These registers on SIENAVAC are:

• ACCUMULATOR – an 8-bit value that stores operands and results of instruction execution.

• PROG ADDR – a 5-bit value indicating the location of the next instruction to be executed.

• OPERATION – a 3-bit value representing the current operation (from thetable above).

• OPERAND ADDR – a 5-bit value indicating where to find an operand in memory.

• OPERAND – an 8-bit value to be used as an arithmetic operand.

There is also memory to store data and programs on SIENAVAC. Itis incredibly small by today’s
standards (or any standards, for that matter): it contains only 32 8-bit values. Each of these values
is referred to by an address. Since there are 32 of these locations, we can number them from 0-31
and use a 5-bit number to refer to them.

1Thanks to Mr. Gary Cutler, a Siena CSIS-010 instructor, for this example architecture.

3



CSIS 010 Introduction to Computer Applications Fall 2010

MEMORY
Addr Contents Addr Contents

00000 001 00011 10000 010 10101
00001 011 00100 10001 110 00101
00010 011 00101 10010 000 00000
00011 000 00001 10011 011 10000
00100 000 00010 10100 111 11111
00101 000 00011 10101 011 01101
00110 101 10101 10110 001 10101
00111 011 11111 10111 010 00000
01000 100 00100 11000 000 10101
01001 011 00100 11001 110 00101
01010 011 00101 11010 000 00000
01011 000 00001 11011 011 10000
01100 000 00010 11100 111 11111
01101 000 00011 11101 011 01101
01110 101 10101 11110 001 10101
01111 011 11111 11111 010 00000

The first seven locations in the chart above constitute a simple machine language program which
will compute the sum of the integers 1, 2 and 3 (we’ll see just how in a minute).

Machine language got that name from the fact that each make and model of computer had its own
(unique) instruction set, thus making it the “language” forthat “machine”. Getting a machine
language programinto a computer like SIENAVAC’s memory was a time-consuming operation.
Each of the lights on the front panel served two purposes on SIENAVAC they were switches as
well mere indicator lights. When an “off” light is pressed, itturns “on”. When an “on” light is
pressed, it turns “off”. The “off” values denote zero while the “on” values denote one.

Each one of those memory values was entered manually, as follows:

1. The desired value is “toggled” in to theOPERAND indicator on the panel.

2. The address into which thatOPERAND value should be stored is entered into thePROG
ADDR indicator on the panel.

3. The “Store” button is pressed - an action which saves theOPERAND value into thePROG
ADDR location in memory.

This was repeated until the seven desired memory values weresaved.

As you can guess, this process was quite tedious and is only reasonable for small programs. Today,
computers still execute machine language program, but theyare loaded into memory by more
automatic means.

4



CSIS 010 Introduction to Computer Applications Fall 2010

The program is executed by entering the starting address of the program010 (000002) - into the
PROG ADDR field and pressing the “Run”button.

The first instruction is aLOAD instruction (0012). This type of an instruction loads a value from
memory into the register called the accumulator so that subsequent instructions may perform arith-
metic operations against it. This is quite similar to what you do when you enter a number into the
display of a hand-held calculator. In this case, the contents of memory location310 (000112) will
be loaded.

Memory location310 contains the number110 (000000012), and so that value is loaded into the ac-
cumulator as SIENAVAC prepares to run the next instruction.Each time SIENAVAC completes the
execution of an instruction, it automatically adds one to thePROG ADDR value to determine from
where it will fetch the next instruction. This means that theinstruction at address110| (000012)
will be the next one executed.

So after this instruction is executed, the display of lightson SIENAVAC’s panel “looks” like this:

ACCUMULATOR 0 0 0 0 0 0 0 1
PROG ADDR 0 0 0 0 0
OPERATION 0 0 1

OPERAND ADDR 0 0 0 1 1
OPERAND 0 0 0 0 0 0 0 1

This is just before SIENAVAC increments thePROG ADDR in preparation to execute the next
instruction.

The instruction at address110 (000012) is the next one executed. That instruction anADD (0112)
will add the contents of the accumulator to the contents of a memory location, leaving the sum in
the accumulator, replacing its prior contents.

In this case, theADD instruction will add the accumulator’s contents -110 (000000012) - to the con-
tents of memory location410 (001002). Memory location410 contains the value210 (000000102),
so the sum110 + 210 = 310 (000000112) will be saved in the accumulator.

ACCUMULATOR 0 0 0 0 0 0 1 1
PROG ADDR 0 0 0 0 1
OPERATION 0 1 1

OPERAND ADDR 0 0 1 0 0
OPERAND 0 0 0 0 0 0 1 0

Incrementing thePROG ADDR register to a210 (000102), SIENAVAC now prepares to execute the
instruction at address 2.

That instruction is anotherADD (0112) instruction. In this case, SIENAVAC adds the contents of
memory location510 (001012) to the accumulator.

Since memory location510 contains310 (000000112) and the accumulator contains310 (000000112)
the result of610 (000001102) is saved in the accumulator.

5



CSIS 010 Introduction to Computer Applications Fall 2010

ACCUMULATOR 0 0 0 0 0 1 1 0
PROG ADDR 0 0 0 1 0
OPERATION 0 1 1

OPERAND ADDR 0 0 1 0 1
OPERAND 0 0 0 0 0 0 1 1

Next the computer executes theHALT (0002) instruction at memory location310 (000112). The
“Stop” light comes on and program execution ceases. The computer’s human operator may then
read the final result of610 (000001102) from the accumulator.

ACCUMULATOR 0 0 0 0 0 1 1 0
PROG ADDR 0 0 0 1 1
OPERATION 0 0 0

OPERAND ADDR 0 0 0 0 1
OPERAND 0 1 1 0 0 1 0 0

An interesting characteristic of stored-program computers such as these is that the CPU typically
makes no distinction whatsoever between a memory location containing data and one containing
instructions. Here we saw memory location310 (000112) being used both as a data value (110)
and as a computer instruction (HALT). This interesting characteristic actually allowed earlypro-
grammers to write programs that could re-write themselves when executed! This practice is now
discouraged because it makes the diagnosis and repair of program problems almost impossible; in
fact, many CPUs today require that memory areas be declared as“data” or “instruction” areas to
prevent instructions from being overwritten or data from being executed!

6


