Computer Science 010

Introduction to Computer Applications
SIENAcollege siena College

Computer Science Fall 2010

Topic Notes: Von Neumann Architecture

Architecture Basics
Modern computers use tivenNeumann architecture.

Idea: a set of instructions and a loop:

. Fetch an instruction

. Update next instruction location

1
2
3. Decode the instruction
4. Execute the instruction
5

. GOTO 1

Basic picture of the system:

scratchpad

Microsequencer ONtrol

(BRAIN!) store
Y (microcode)

arithmetic
logic
unit

The ALU knows how to do some set of arithmetic and logical afiens on values in the scratch-
pad.

Usually the scratchpad is made up of a setegisters.

The micro-sequencer “brain” controls what the ALU readsfthe scratchpad and where it might
put results, and when.

CSIS 010 Introduction to Computer Applications Fall 2010

We will not be concerned about the details of the micro-sagee
This is what makes up theentral processing unit (CPU).

We can expand this idea a bit to include memory and other dsvic

scratchpad
CPU
Chip
Microsequencer control
(BRAIN!) ~ store
(microcode)
ALU:
arithmetic
logic
? unit
lots of pins Memory
Address Bus
Data Bus
[other devices...

mouse
The CPU interacts with memory and other devicebuases.
These buses are just wires that carry the electrical sighalsepresent the data.

If you dig deep down into any modern computer you use, it lmlen to this basic process.

The SIENAVAC

The study of a real architecture would go beyond the scopéisfdourse, but we can get the
idea by considering a simple hypothetical computer we'll tee SIENAVAC, which stands for

CSIS 010 Introduction to Computer Applications Fall 2010

“SIENA’s Very AncientComputer”?

Note that this name is a play on “UNIVAC”, which was the name afiy of the earliest commer-
cial computers. There, it was short fddNIVersalAutomaticComputer”.

Before we can continue, we need to specify some rules abouSheWAVAC works.

We need to know the set of instructions that SIENAVAC can axeclt has only 8, and we will
use 3-bit binary codes to represent the 8 operations.

000 | HALT

001 | LOAD

010 | STORE

011 | ADD

100 | SUBTRACT
101 | MULTI PLY
110| DI VI DE

111 | JUMPI FZERO

Like other computers in the earliest days of computing, SYZAC contains a main panel of
lights. When these computers ran programs, those lightsl¢ellila trained observer exactly what
was happening inside the system at the time. What these hgdrs showing were the current
values in the various computer’s registers. These registere used to hold arithmetic operation
results, current program address and operation-codes/ahgtany other values that were vital to
the computer’s operation. Today’s computers all have teas®e types of registers, but computer
designers no longer feel it is necessary to display thengimdi Compared to the computers of
yesteryear, today’s computers have a very boring appeasaricout those light displays!

These registers on SIENAVAC are:

ACCUMULATOR — an 8-bit value that stores operands and results of ingtruekecution.

e PROG ADDR - a 5-bit value indicating the location of the next instrantto be executed.

OPERATI ON - a 3-bit value representing the current operation (frontabée above).

OPERAND ADDR - a 5-bit value indicating where to find an operand in memory.

OPERAND — an 8-bit value to be used as an arithmetic operand.

There is also memory to store data and programs on SIENAVAE iticredibly small by today’s
standards (or any standards, for that matter): it contaihs32 8-bit values. Each of these values
is referred to by an address. Since there are 32 of thesedonsatve can number them from 0-31
and use a 5-bit number to refer to them.

Thanks to Mr. Gary Cutler, a Siena CSIS-010 instructor, lics €xample architecture.

CSIS 010 Introduction to Computer Applications Fall 2010

MEMORY
Addr | Contents || | Addr | Contents

00000 || 001 | 00011 10000| 010 | 10101
00001 | 011| 00100 10001| 110| 00101
00010 011 00101 10010|| 000 | 00000
00011 000 | 00001 10011| 011 | 10000
00100 000 | 00010 10100| 111| 11111
00101 000 | 00011 10101} 011 | 01101
00110|| 101 | 10101 10110| 001 | 10101
00111 011 111112 10111 010 | 00000
01000 100| 00100 11000| 000 | 10101
01001 011 | 00100 11001| 110| 00101
01010 011 00101 11010|| 000 | 00000
01011 OO0 | 00001 11011} 011 | 10000
01100 000 | 00010 11100 111 | 11111
01101| 000 | 00011 11101 011 | 01101
01110|| 101 | 10101 11110/ 001 | 10101
01111 011 11111 11111 010 | OOO00

The first seven locations in the chart above constitute alsimachine language program which
will compute the sum of the integers 1, 2 and 3 (we’ll see just in a minute).

Machine language got that name from the fact that each makenadel of computer had its own
(unique) instruction set, thus making it the “language” float “machine”. Getting a machine
language prograrmto a computer like SIENAVAC's memory was a time-consuming opera
Each of the lights on the front panel served two purposes &NSVAC they were switches as
well mere indicator lights. When an “off” light is pressediurns “on”. When an “on” light is
pressed, it turns “off”. The “off” values denote zero whiteet‘on” values denote one.

Each one of those memory values was entered manually, as/fll

1. The desired value is “toggled” in to tli#ERAND indicator on the panel.

2. The address into which th&@PERAND value should be stored is entered into #ROG
ADDR indicator on the panel.

3. The “Store” button is pressed - an action which savesCOPEERAND value into thePROG
ADDR location in memory.

This was repeated until the seven desired memory valuessages!.

As you can guess, this process was quite tedious and is adgpmable for small programs. Today,
computers still execute machine language program, but dneyoaded into memory by more
automatic means.

CSIS 010 Introduction to Computer Applications Fall 2010

The program is executed by entering the starting addredgegbtogram0,, (00000s) - into the
PROG ADDR field and pressing the “Run”button.

The first instruction is & OAD instruction ()01,). This type of an instruction loads a value from
memory into the register called the accumulator so thatexyuent instructions may perform arith-
metic operations against it. This is quite similar to what ylo when you enter a number into the
display of a hand-held calculator. In this case, the costehtmemory locatior3;, (000115) will

be loaded.

Memory location3;, contains the numbdr,, (00000001;), and so that value is loaded into the ac-
cumulator as SIENAVAC prepares to run the next instructteach time SIENAVAC completes the
execution of an instruction, it automatically adds one ®RROG ADDR value to determine from
where it will fetch the next instruction. This means that thstruction at address,;| (000015)
will be the next one executed.

So after this instruction is executed, the display of lighisSIENAVAC’s panel “looks” like this:

ACCUMULATCOR
PROG ADDR
OPERATI ON

OPERAND ADDR
OPERAND

00000001
00000
001
00011
00000001

This is just before SIENAVAC increments tHRROG ADDR in preparation to execute the next

instruction.

The instruction at addreds, (00001,) is the next one executed. That instruction ABD (011,)
will add the contents of the accumulator to the contents okenory location, leaving the sum in

the accumulator, replacing its prior contents.

In this case, thé&DD instruction will add the accumulator’s contents g (000000015) - to the con-
tents of memory locatiod;, (001005). Memory locatiord;, contains the value,, (00000010,),
so the sunmi g + 219 = 310 (000000115) will be saved in the accumulator.

ACCUMULATCOR
PROG ADDR
OPERATI ON

OPERAND ADDR
OPERAND

00000011
00001
011
00100
00000010

Incrementing thé°’ROG ADDR register to &4 (000105), SIENAVAC now prepares to execute the

instruction at address 2.

That instruction is anothekDD (0115) instruction. In this case, SIENAVAC adds the contents of

memory locatiorby, (00101,) to the accumulator.

Since memory locatiob,, contains3;o (000000115) and the accumulator contaisg (000000115)
the result o6, (00000110,) is saved in the accumulator.

5

CSIS 010

ACCUMULATOR
PROG ADDR
OPERATI ON

OPERAND ADDR
OPERAND

Introduction to Computer Applications

Fall 2010

00000110
00010
011
00101
00000011

Next the computer executes thALT (000,) instruction at memory locatioB;, (000115). The
“Stop” light comes on and program execution ceases. The atarip human operator may then
read the final result af;, (000001105) from the accumulator.

ACCUMULATCOR
PROG ADDR
OPERATI ON

OPERAND ADDR
OPERAND

00000110
00011
000
00001
01100100

An interesting characteristic of stored-program compuserch as these is that the CPU typically
makes no distinction whatsoever between a memory locatataming data and one containing
instructions. Here we saw memory locatidfn (00011,) being used both as a data valuegj
and as a computer instructioRlALT). This interesting characteristic actually allowed egmtg-
grammers to write programs that could re-write themselvesnexecuted! This practice is now
discouraged because it makes the diagnosis and repairgrigongroblems almost impossible; in
fact, many CPUs today require that memory areas be declareh&&s or “instruction” areas to
prevent instructions from being overwritten or data fronngeexecuted!

