
Computer Science 523
Advanced Programming
The College of Saint Rose
Summer 2014

Topic Notes: Searching and Sorting

Searching
We all know whatsearching is – looking for something. In a computer program, the searchcould
be:

• Looking in a collection of values for some specific value (where is the 17 in this array of
int?).

• Looking for a value with a specific property (which object in agraphics window contains the
location where I clicked the mouse?).

• Looking for a record in a database (what is the tax history forthe last four years for the
taxpayer with SSN 101-11-1009?).

• Searching for text in some document or collection of documents (what web pages contain
the text “searching and sorting algorithms?”).

• What known amino acid sequences best match this sequence gathered from proteins in a
given virus?

We have done some searching this semester. Remember the test to see which spell was specified
in the “SpellsArray” example.

spellnum = -1;
for (int spellIndex = 0; spellIndex < spells.length; spellIndex++) {
if (spellName.equals(spells[spellIndex].getKey())) {

spellnum = spellIndex;
break;

}
}
if (spellnum >= 0) {
System.out.println(spells[spellnum].getValue());

}
else {
System.out.println("Your wand doesn’t know that one. It explodes. Bye!");

}



CSC 523 Advanced Programming Summer 2014

We have to search through our collection of objects (Associations) to see which one, if any,
contains the matching key.

How do we know that we’re done searching? In this case, we needonly search until we find the
first matching entry. But in many cases, we keep looking until we get to the end of our array.

Let’s try to get some idea of how much “work” it takes for us to get an answer. As a rough estimate
of work, we will count how many times we call theequals method of aString to compare the
key.

If we haven Associationss in the array, how many calls to theString equals method will
we have to make before we know the answer? In this case, it’s once per entry in the array, son
times.

In some other cases, it depends on how quickly we find the answer. If none of theAssociations
contains the matching key at all, we need to check alln before we know the answer. If one does
contain a match for the key, we can stop as soon as we find the first one that matches it. It might
be the first, it might be the last – we just don’t know. Assumingthat there’s an equal probability
that theAssociation that contains the matching key is at any of then positions, we have to
examine, on average,n

2
Associations.

In this case, we can’t do any better. Perhaps if we decided to check in some other order rather than
always examining the first, then the second, and so on.

We are searching in an array, where we have the option to look at any element directly. We will
consider an array ofint, though most of what we discuss applies to a wider range of “searchable”
items.

A method to do this:

/*
* Search for num in array. Return the index of the number, or

* -1 if it is not found.

*/
int getIndexOfNum(int[] array, int num) {

for (int index = 0; index < array.length; index++) {
if (array[index] == num) {

return index;
}

}
return -1;

}

The procedure here is a lot like the searches we have seen. We have no way of knowing that we’re
done until we either find the number we’re looking for, or until we get to the end of the array. So
again, if the array containsn numbers, we have to examine alln in an unsuccessful search, and,
on average,n

2
for a successful search. We could instead search from the endto the front, and we

would have no reason to believe that we’d do any better or worse, on average.

2



CSC 523 Advanced Programming Summer 2014

Now, suppose the array has been sorted in ascending order.

Well, we can do the same type of search – start at the beginningand keep looking for the number.
In the case of a successful search, we still stop when we find it. But now, we can also determine
that a search is unsuccessful as soon as we encouter any number larger than our search number.
Assuming that our search number is, on average, is going to befound near the median value of the
array, our unsuccessful search is now going to require that we examine, on average,n

2
items. This

sounds great, but in fact is not a really significant gain, as we will see. These are all examples of a
linear search – we examine items one at a time in some linear order until we find the search item
or until we can determine that we will not find it.

But there is a better way. To get the intuition for the next way to search for a number, think back
to your favorite number guessing game. I pick a number between 1 and 100 and you have to guess
what it is. The game usually goes something like this:

Me: Guess my number.
You: 50.
Me: Too High.
You: 25.
Me: Too Low.
You 37.
Me: Too High.
You 31.
Me: That’s right.

If you know that there is an order – where do you start your search? In the middle, since then even
if you don’t find it, you can look at the value you found and see if the search item is smaller or
larger. From that, you can decide to look only in the bottom half of the array or in the top half
of the array. You could then do a linear search on the appropriate half – or better yet – repeat the
procedure and cut the half in half, and so on. This is abinary search. It is an example of adivide
and conquer algorithm, because at each step, it divides the problem in half.

A Java method to do this:

/*
* Binary Search for num in array.

*/
int getIndexOfNum(int[] array, int num) {

int mid;
int left = 0;
int right = array.length - 1;
while (left < right) {
mid = (low + high) / 2;
if (array[mid] == num) {

// num is same as middle number

3



CSC 523 Advanced Programming Summer 2014

return mid;
} else if (num < array[mid]) {

// num is smaller than middle number
right = mid - 1;

} else {
// num is larger than middle number
left = mid + 1;

}
}
return -1;

}

How many steps are needed for this?

• Each time, we cut the part of the array we still need to search in half.

• How many times can divide number in half before you get to 1?

• If you start withn, you divide to getn
2

thenn

4
, n

8
, ... and eventually get 1.

• Let’s suppose thatn = 2k, then divide to2k−1, 2k−2, 2k−3, ...,20 = 1; dividek times by 2.

• In general, we can dividen by 2 at mostlog
2
n times to get down to 1.

So how much better is this, really? In the case of a small array, the difference is not really signifi-
cant. But as the size grows...

Search# elts 10 100 1000 1,000,000
linear 10 100 1000 1,000,000
binary 8 14 20 40

That’s pretty huge. Even if you think about the search reallyneeding on averagen
2

steps, for the
1000-element case, the binary search is still winning 500 to20. The logarithmic factor is really
important.

We can see this better by looking at graphs ofn vs.log n andn. The difference is large, and gets
larger and larger asn gets larger. Even if we multiply by constant factors in an attempt to make the
log n graph as large as then graph, there will always be a value ofn large enough that the scaled
function forn will be larger than the scaled function forlog n. More on this later.

See Example: BinSearch

Comparable Objects
If we are going to deal withObjects rather than primitive types for a binary search, we need
a way to compare them. We need a more general analog of theequals method. We can write

4



CSC 523 Advanced Programming Summer 2014

a method that compares anObject to another, like thecompareTo() method ofStrings.
However, there is nocompareTo method inObject.

Fortunately, Java provides an interface that does exactly this, theComparable interface. Any
object that implementsComparable will have acompareTo method, so if we write our search
(and next up, sorting) routines to operate onComparables, we will be all set.

Note the weird syntax in the example code. In this case, we don’t specify a generic type for the
class, just for the method that requires that knowledge.

The<T extends Comparable>means that any class can be used for the type of the array and
search element, as long as the array was declared and constructed as some type that implements
theComparable interface.

Several standard Java classes implement theComparable interface, including things likeInteger
andDouble.

So we can write methods that expect objects that extendComparable, and be guaranteed that an
appropriatecompareTo method will be provided.

Sorting
We’ll now look at sorting, since we will need to be able to sortan array to use binary search. As
we will see, sorting takes a fair amount of time, but if we are going to be searching a large array a
lot, the savings obtained by using binary search over linearwill more than make up for the cost of
sorting the array once.

Suppose our goal is to take a shuffled deck of cards and to sort it in ascending order. We’ll ignore
suits, so there is a four-way tie at each rank.

Describing a sorting algorithm precisely can be difficult. Let’s consider a few.

1. selection sort

2. insertion sort

3. merge sort

Selection Sort

First, we will look at this procedure:

• Search for the smallest card, and move it to the front of the deck.

• Search for the next smallest card, and move it to the second position in the deck.

• ...

5



CSC 523 Advanced Programming Summer 2014

What I have described is a form of aselection sort – at each step, we select the item that goes into
the next position of the array, and put it there. This gets us one step closer to a solution.

public void selectionSort(int[] array) {
for (int i = 0; i < array.length - 1; i++) {
int smallestPos = i;
for (int j = i+1; j < array.length - 1; j++) {

if (a[j] < a[smallestPos) {
smallestPos = j;

}
}
int temp = array[smallestPos];
array[smallestPos] = array[i]
array[i] = temp;

}
}

How long does this algorithm take? As we did with searching, we won’t try to calculate an exact
time, but we will estimate the cost by computing the number ofcomparisons done in sorting an
array. We could alternately choose the to count the total number of “visits” to an array element,
but the “shape” of the answer will be the same no matter which of these we compute.

Suppose the original array hasn elements, wheren > 1. Then it takesn − 1 comparisons to find
the smallest element of the array (compare the first with the second, the largest of those with the
third, etc.). In general, the number of comparisons needed to find the smallest element is one less
than the number of elements to be sorted. Once this element has been put into the first slot of the
array, we need to sort the remainingn − 1 elements of the array. By the argument above, it takes
n − 2 comparisons to find the largest of these. We continue with successive stages takingn − 3,
n− 4, all the way down to the last pass through when there are only two elements and it takes only
1 comparison. (Once we get down to 1 element there is nothing to be done.)

Thus it takesS = (n − 1) + (n − 2) + (n − 3) + ... + 3 + 2 + 1 comparisons to sort a list ofn
elements. We can compute this sum by writing the list forwards and backwards, and then adding
the columns:

S = (n-1) + (n-2) + (n-3) + ... + 3 + 2 + 1
S = 1 + 2 + 3 + ... + (n-3) + (n-2) + (n-1)
-------------------------------------------------------
2S = n + n + n + ... + n + n + n = (n-1)*n

ThereforeS = n
2
−n

2
. The graph of this asn increases looks liken2 – a parabola. Therefore,

selection sort takesn2 time, which is much worse than the behavior for the searchingalgorithms
we saw last time.

Insertion Sort

6



CSC 523 Advanced Programming Summer 2014

The selection sort builds up the sorted list by finding the smallest and putting it into the first
position, the sthe second smallest and putting it into the second position, etc., until the entire list is
sorted.

Insertion sort takes a different approach. It builds up a sorted list by noticing that we can build a
sorted list of sizen + 1 by taking a sorted list of sizen and inserting then + 1st element in its
correct position.

We will not look at this algorithm in great detail here. Like selection sort, insertion sort takesn2

time.

Merge Sort

Our next sorting algorithm proceeds as follows:

• First, our base case: If the array contains 0 or 1 elements, there is nothing to do. It is already
sorted.

• If the array has two or more elements in it, we will break it in half, sort the two halves, and
then go through and merge the elements.

The Java method to do it:

public void sort(int[] array) {
// create tempArray for use in merging
int[] tempArray = new int[array.length];
mergeSort(array, 0, array.length-1, tempArray);
}

/*
* PRE: left and right are valid indexes of array.

* tempArray.length == array.length

* POST: Sorts array from start to right.

*/
public void mergeSort(int[] array, int left, int right, int[] tempArray) {

if (left < right) {
int middle = (right + left) / 2;
mergeSort(array, left, middle, tempArray);
mergeSort(array, middle + 1, right, tempArray);
merge(array, left, middle, right, tempArray);

}
}

The methodmerge takes the sorted elements inarray[left..middle] andarray[middle+1..right]
and merges then together using the arraytempArray, and then copies them back intoarray.

7



CSC 523 Advanced Programming Summer 2014

/*
* PRE: left <= middle <= right and left,middle,right are valid indices for

* tempArray.length == array.length

* array[left..middle] and array[middle+1..right] must both be sorted.

* POST: Merges the two halves (array[left..middle] and array[middle+1..right])

* together, and array[left..right] is then sorted.

*/
private void merge(int []array, int left, int middle, int right, int[] tempArray)

int indexLeft = left;
int indexRight = middle + 1;
int target = left;

// Copy both pieces into tempArray.
for (int i = left; i <= right; i++) {
tempArray[i] = array[i];

}

// Merge them together back in array while there are
// elements left in both halves.
while (indexLeft <= middle && indexRight <= right) {
if (tempArray[indexLeft] < tempArray[indexRight]) {

array[target] = tempArray[indexLeft];
indexLeft++;

} else {
array[target] = tempArray[indexRight];
indexRight++;

}
target++;

}

// Move any remaining elements from the left half.
while (indexLeft <= middle) {
array[target] = tempArray[indexLeft];
indexLeft++;
target++;

}

// Move any remaining elements from the right half.
while (indexRight <= right) {
array[target] = tempArray[indexRight];
indexRight++;
target++;

}
}

8



CSC 523 Advanced Programming Summer 2014

Again we’d like to count the number of comparisons necessaryin order to sort an array ofn
elements. Unfortunately, the code shown above doesn’t include any comparisons – all of the
comparisons are in themergeRuns method.

Even without looking at the code inmerge we can estimate the number of comparisons made. If
we are trying to merge two sorted lists, every time we comparetwo elements at the ends of the lists
we will put one in its correct position. When we run out of the elements in one of the lists, we put
the remaining elements into the last slots of the sorted list. As a result, merging two lists which
have a total ofn elements requires at mostn− 1 comparisons.

Suppose we start with a list of n elements. LetT (n) be a function telling us the number of com-
parisons necessary to mergesort an array withn elements. As we noted above, we break the list in
half, mergesort each half, and then merge the two pieces. Thus the total amount of comparisons
needed are the number of comparisons to mergesort each half plus the number of comparisons
necessary to merge the two halves. By the remarks above, the number of comparisons to do the
final merge is no more thann− 1. ThusT (n) <= T (n/2)+T (n/2)+n− 1. For simplicity we’ll
replace then − 1 comparisons for the merging by the even largern in order to make it easier to
see how to approximate this result. We haveT (n) = 2 · T (n/2) + n and if we find a function that
satisfies that equation, then we have an upper bound on the number of comparisons made during a
mergesort.

Looking at our algorithm, no comparisons are necessary whenthe size of the array is 0 or 1. Thus
T(0) = T(1) = 0. Let us see if we can solve this for small values of n. Because we are constantly
dividing the number of elements in half it will be most convenient to start with values ofn which
are a power of two. Here we list a table of values:

n T (n)
1 = 20 0
2 = 21 2 · T (1) + 2 = 2 = 2 · 1
4 = 22 2 · T (2) + 4 = 8 = 4 · 2
8 = 23 2 · T (4) + 8 = 24 = 8 · 3
16 = 24 2 · T (8) + 16 = 64 = 16 · 4
32 = 25 2 · T (16) + 32 = 160 = 32 · 5

... ...
n = 2k 2 · T (n

2
) + n = n · k

Notice that ifn = 2k thenk = log
2
n. ThusT (n) = n · log2n. In fact this works as an upper bound

for the number of comparisons for mergesort even ifn is not even. If we graph this we see that it
grows much, much slower than the graph for a quadratic (for example, the one corresponding to
the number of comparison for selection sort).

This explains why, when we run the algorithms, the time for mergesort is almost insignificant
compared to that for selection sort.

9


