Computer Science 523

Advanced Programming

The College of Saint Rose
Summer 2014

Topic Notes: Recursive Methods and Structures

You have seen in this course and in your previous work thetiten is a fundamental building
block that we can use to construct code that implements amitdg to solve a problem. We will
next spend some time considering another fundamentalibgitdock: recursion.

The idea here is that we solve a problem by first solving one arensmaller instances of the
problem, then using those solutions, to solve the originabiem.

As a simple example suppose | want to add up everyone’s midieores in a class of students.
A recursive approach to this would be to add upithe 1 scores from all but one person, giving
me a solution to a smaller instance of the same problem (deurobf sizen — 1 instead ofz), then
taking that total and adding in the score of the person wheaavas initially omitted, giving me
the solution to the original problem.

The recursive approach would solve each of the subproblecussively as well. That is, the— 1
exams would be tallied by first computing the totalof 2 of them and adding in the — 1%¢. If
you think about this a bit, you'll also realize we need some teastop the recursion. Here, we
have two choices, either of which would work. We could say tbadd up the exam scores for a
set of 1 exam, we just take that exam’s score as the answexe@an say that to add up the exam
scores for a set of 0 exams results in a total score of 0.

So we can write this procedure a bit more precisely as a saestiictions:

To add scores on n exans:
if there is just one score, the answer is that exanm s score
el se
conpute the scores of all but 1 exam using these instructions
add in the examthat was not part of the subset conputed
return that sum as the answer

Recursive Methods
For our first coding example with recursion, we first look batkn older example:
See Example: Sum1ToN

In particular, our method to compute the sum:

public static int sumNunbersTo(int limt) {

CSC 523 Advanced Programming Summer 2014

int sum = O;
for (int nunmber = 1; nunber <= limt; nunber++) {
sum += nunber;

}

return sum

For the moment, forget this formula:

n(n+1)

X

and the fact that it led us to a much more efficient way to coepiae sum. We’ll focus on a
formula that represents the iterative method above:

Yi=1+2+4..+n
i=1

The “...” in the formula is encoded in Java by ther loop.

Alternatively, we can think about this formula recursively

yi-]! if n =1
&' | (X)) -n otherwise
This says that we can compute the sum of the fistimbers by applying the appropriate rule:

e If n =1, the sum is trivial and we know the answer is 1. This is callexbhse case for our
recursion.

e Otherwise, we will apply this same formula to compute the sxfitne firstn — 1 numbers,
and then ada to that sum to get our answer. This is tieeursive case.

In the end, we’ll need the same number of addition operatisnse did in the iterative formula.
So let’s look at this translated to a Java method:

See Example: SumlToNRec

public static int sumNunbersTo(int limt) {

/1l first, we check for the base case
if (limt ==1) return 1;

CSC 523 Advanced Programming Summer 2014

/'l otherwi se, we have to nake a recursive nethod
/1 call to conpute the sumof the first limt-1
[l nunbers, then add in limt to get our answer
return sumNunbersTo(limt - 1) + limt;

The above method looks very simple, but it often completelyfases programmers who are not
experienced in working with recursion. Yes, the metlwadls itself to be able to compute its
answer.

How can this work? It's the equivalent of you going up to anegxpn addition and asking how to
add together a bunch of numbers. The (unsatisfying) regpsriadd a bunch of numbers then add
one more time”. If you knew how to add a bunch of numbers, youldist be asking in the first
place (so you ask again)! It’s like looking up a word in thetidicary only to have the dictionary
use the word in its definition.

But the key here is that each time you ask, there are fewer msndadd up. Eventually, you will
ask the expert on addition to add a single number, to whiclidbgonse will finally be “oh, you
have just one number there, the sum is that number.”

The same thing happens here. Your program keeps calimjNunber sTo with smaller and
smaller values for théi m t parameter until i m t finally becomes 1, and that method returns
1. The big question is, how do we know how many times it tookdbtg that point? They key
idea is that your program now hascopies of thd i m t parameter, whose values range from
on the initial call, down to 1 on the call that triggers thedaase.

| think that to understand this, we need to construct a merd@gram (which will be done in
class).

Comparing Costs

Another thing we want to start to think more carefully abauthe relative costs of different ways
to perform a computation. There are many measures of castdmabe interesting in different
contexts, but the most common aamputational cost, the amount of work the processor needs to
perform to complete the task, angmory cost, the amount of memory that needs to be allocated
to the program to complete the task.

These values are typically measured as a function of somg pgrameter or size.

We have three versions of treunmNunber sTo method that we can consider in this context:
the iterative version, the recursive version, and the oaeubkes the one-step formula. In these
methods, we will think of the “problem size” as the input nuenk the number of values we want
to add up. Subsequent discussion here will refer to this, @en though it is nameldi m t in
the formal parameter of the methods.

First, we consider the amount of computing. Here, a meanimgéasure is how many arithmetic
operations are required.

For the iterative method, the addition operations are entfie loop — one per iteration. The loop

3

CSC 523 Advanced Programming Summer 2014

will executen — 1 times, so there is a total ef — 1 additions required.

For the method that uses the formula, there is a total of 3atieeis, one each of addition, mul-
tiplication, and division. Note that this value stays theneano matter what is. This is good,
especially for large values af.

For the recursive method, we need to think a little more. Hauhb the recursive case executes,
there are two operations in play — we have to do one additi@hoge subtraction (to compute
[imt-1). This might at first seem more expensive than the iteratersion, but there we ig-
nored then additions needed to manage ther loop. There are no arithmetic operations needed
when the base case executes. So what remains is to deterown@dmy times the recursive case
executes before we reach the base case. That number ishere.

In the first and last cases, we note that the computationalicdgectly proportional to: — that

is, the computational cost scales linearlynaisicreases. A more formal way of saying this is that
the computational cost of these(i§n), usually read “order n” or “Big-O of n”. In the method that
uses the formula, the cost is a constant. That is, it staysahe no matter how large a valuerof
we present. More formally, this is a method that execut&s(ih) time.

The memory costs are measured by detemining how many paemaetd local variables (often
called stack variables) as well as objects and/or arrays constructed withv (called heap vari-
ables) are allocated. In these methods, there are no heap varielvigved, so we can focus on
the formal parameters and local variables.

In the non-recursive methods, the method executes justtormemplete its work, so there is just
the one copy of each parameter and local variable. Theiiteratrsion has three such variables:
the parameter, the local variald@eim and the loop index variable. The formula version has just
the parameter. In either case, the amount of memory needesdndd depend on, so the memory
usage is constant, 6r(1).

The recursive method’s memory cost does depend,as each recursive call results in another
copy of the parametéri m t being created on the stack. Note in particular how each rdethbb

is still in execution until the chain of recursive methodisataches the base case. We said earlier
that there will be a total of, — 1 recursive calls, and at the peak depth of the recursiom, -alll

are in execution. This means the amount of memory needaueiarly proportional ta, or O(n).

A Slightly More Interesting Example
As a next example, let’s look at a program to raise numberswers:
See Example: Powers

We can see that the basic idea here is to read in a couple genstea base and an exponent, and
then raise the base to that power. There are three methoelsdileof which compute the same
thing but in different ways.

Before we look at the three methods and tred n method that uses them, first a few words
(reminders, for many of you) about the ranges of values thatbe represented by Java’s integer
types. Normally, we use thent data type, which uses a 32-bit 2’s complement format to s

CSC 523 Advanced Programming Summer 2014

numbers between 23! and23! — 1. This is sufficient for the vast majority of programs. If tsatot
enough, we can move up to theng primitive type, which uses 64 bits and can represent values
between-2%3 and2% — 1. You will see that the program usksng values for the exponents, and
also uses Java’s long integer literal format by placing dratithe end of the integer literal.ong
variables can hold some really big numbers, but we can eastiged those limits when computing
powers. So this program uses a Java API class cBiled nt eger to represent base values and
computed products, which allows for arbitrarily-largesger values to be represented precisely.

Now on to the methods.

The first,] oopPower simply contains & or loop to multiplybase by itselfexponent times.
Correct, but not especially interesting.

We will focus on the others, firstecPower . How does this one work? Clearly, if we evalu-
ater ecPower (3, 0), the conditionexponent ==0L ist r ue, so the method should return 1.
Suppose instead we evaluatec Power (3, 1) . According to the method definition and the fact
that1! =0, we get that ecPower (3, 1) = 3xrecPower (3, 0), and we know the value of
recPower (3, 0) is 1. Thus the final answer 8 1 or 3. The key is that we are using the facts
thatb® = 1 andb®™* = b+b* to calculate powers. Because we are calculating complexngowe
using simpler powers (the recursive calls each are passedmment one smaller than the one
with which this call was passed), we eventually get to ouelmzse.

It sometimes helps to imagine that we are having someonehalséle the recursive call. That
is, if I want to calculate ecPower (3, 5) , | ask someone else to calculatecPower (3, 4) ,
without caring how they do it, and then, when they give me theneer,81, multiply that answer

by 3 to get the final answer &43. It just happens that that “someone else” is using the same
method we’re writing!

Using a simple modification of the above recursive method areget a very efficient algorithm
for calculating powers, shown inast RecPower . In particular, if we use either of the first two
methods, it will take 1024 multiplications to calculaa®?*. Using a slightly cleverer algorithm
we can cut this down to only 11 multiplications!

In each of the first two methods, the number of multiplicasioecessary is equal to the value of
the exponent. That is not the case here.

fast RecPower (3, 16) = fast RecPower(9,8) // nult

= fast RecPower (81, 4) [l mult
= fast RecPower (6561, 2) /1 mult
= fast RecPower (43046721, 1) [l mult
= 43046721 * fast RecPower (43046721, 0)

= 43046721 *~ 1 /1 mult
= 43046721

Thus it only took 5 multiplications (and 4 divisions by 2)ngf ast RecPower , whereas it would
have taken 16 multiplications the other way (and divisiopsvio can be done very efficiently in
binary).

CSC 523 Advanced Programming Summer 2014

In general it takes somewhere betweéeg,(exponent) and?2 log,(exponent) multiplications
to compute a power this way. While this doesn’t make a diffeeefor small values of expo-
nent, it does make a difference when exponent is large. Fampbe, computing ast Rec Pow
er (3, 1024) would only take 11 multiplications, while computing it wigither of the other two
methods would take 1024 multiplications.

Why does this algorithm work? It works because it is based enfaowing simple rules of
exponents:

e base’ =1
o base™P+! — pase x base™P

o base”®P — (base?) &P

The key is that by rearranging the order of doing things inevea way, we can cut down the
amount of work considerably! (Again it is possible to writeetabove algorithm with ahi | e
loop, but the above recusrive formulation is arguably edsienderstand!)

Let’s think a bit more carefully about the relative coststarms of both computation and memory.

The costs of the iterativeoopPower and straightforward ecPower methods are just like the
iterative and recursive methods we saw above.rlefpresent thexponent parameter.

The iterative method has a loop that executesmes for a computational cost @#(n). The
memory cost is constant with just a single method call withoapte of parameters and local
variables allocated, so the memory cosDig).

The recursive method executes its recursive casenes, with a constant amount of work on
each of those executions, for a total computational cos?(ef). However, each of the method
invocations results in another copy of the parameters bagted. So memory costiy(n).

Thef ast RecPower method is much more interesting. Each call to the methodut&smne of
the three cases, each of which itself results in only a cahataount of computation and one copy
of the parameters on the stack. We mentioned about thats tsdamewhere betweésg,(n) and

2 x log,(n) recursive steps, so the computational and memory costodrélog n).

Recursion with Arrays

Recursive methods can also be used with arrays. For examplgose we want to find the largest
element in an array afnt . We can write a method quite easily to do this with a loop:

public static int max(int[] a) {
int ans = a[0];
for (int i=0; i<a.length; i++) {
if (a[i] > ans) ans = ali];

}

CSC 523 Advanced Programming Summer 2014

return ans;

However, the problem can also be decomposed in a recursieanby thinking about subarrays:

e The largest value in a subarray of size 1 is the value of thégrhent in the subarray

e The largest value in a subarray with at least 2 elements ikgther of the value in the first
element and the largest in the subarray consisting of aliHaitfirst element

Or as a method, where we pass in the first element of the sybaeravish to consider:

public static int maxRec(int[] a, int start) {
/'l base case: |ooking at the | ast el enent
if (start == a.length-1) return a[start];

/'l recursive case: max of a[start] and the
/1 max of the rest

i nt maxof Rest = maxRec(a, start+1);

if (maxOfRest > a[start]) return maxOf Rest;
return a[start];

Such a method is often combined with a helper method thastackhe extra parameter that we
would not want a user of our method to have to include (as itldvoormally be O to start the
search for the max at position 0):

public static int max(int[] a) {

return maxRec(a, 0);

}

Similar methods can be used 8hr i ngs, which are after all, essentially arrays of characters.

Recursive Method Summary

We can both write and understand recursive programs asvillo
1. Write the base case. Convince yourself that this works ctbyre
2. Write the “recursive” case.

e Make sure all recursive calls go to simpler cases than theyonare writing. Make
sure that the simpler cases will eventually get to a base case

7

CSC 523 Advanced Programming Summer 2014

e Make sure that the general case will work properly if all of tiecursive calls work
properly.

Recursive Data Structures

We have seen that constructs such as arrayfanayLi st s allow us to group together collec-
tions of elements using a single name. Recursion affordsath@nmechanism to do so. We begin
this discussion with a custom class that can hold an arpitramber of ouRat i o objects.

See Example: RatioListApplet

This example looks much more complex than it really is, ashmafdche code supports the Swing
GUI interface.

There are three classes here, and we will examine them ort@éas.a

First, theRat i o class is the one we saw eatrlier in the course, but with soméeolérbose
comments stripped out and a few methods added. One of thiésensn-destructivadd method
you wrote for an earlier assignment.

One of a bit more interest is theeduce method. Hopefully you recall that to reduce a fraction
to lowest terms, you find the greatest common divisor (GCDijngtomes called the “greatest
common factor”) of the numerator and the denominator — thgelt number that divides both
evenly — then divide both the numerator and denominator &y@HCD. One method to compute a
GCD is calledeuclid’'s Method, and that is what is implemented by thed method in theRat i o
class. This is a recursive method!

The first line of the method is the base case: the GCD of any numitie O is that other number.
The second line is just a way to swap the order of the parameteen the first is larger than the
second. The third line is the recursive case that appliebd=ualgorithm. The key thing we need
to notice here is that the parameters will always becomelsnaal each recursive step. Eventually,
the base case will come into play.

TheRat i oLi st Appl et class implements a kind of “ratio list calculator” prograihe idea is
that we have a display area that can show a single ratio atiaey ime. We can type in numbers
to change that ratio, we can reduce that ratio to lowest tenasan store the ratio in the display
in a list of ratios, we can compute and display results of adp@erations on the list of ratios (the
sum, the min, and the max), and finally we can reduce all ratitise list to lowest terms.

The vast majority of the code iRat i oLi st Appl et constructs and manages the GUI. We are
most interested in its use of the other class in this profeefRat i oLi st to keep track of the list
of ratios. Before we look at its implementation, let’s see litswsed.

TheRat i oLi st instance variable starts out asl | , indicating that there are no ratios in the
list. New ratios are added to the list in the first part of #et i onPer f or ned method. The
construction is different from those we have seen before:

rati os = new Rati oLi st (newOne, ratios);

8

CSC 523 Advanced Programming Summer 2014

wherenewOne is aRat i 0 just constructed from the values in the text fields of theldisp

Think about what we see here: the constructor forRaei oLi st takes aRati oLi st as a
parameter. We then replace our reference tdRaniel oLi st that we passed in with the new one
that was just returned.

Let’s shift our attention to th®at i oLi st class to see how this constructor is implemented and
what instance variables we find there. To this point, whervev@anted to store a collection of
objects, we have used arrays afudr ayLi st s, but we find neither of those iRat i oLi st .
Instead, we have an instance variable to hold a siRglel o object, and another to hold another
Rat i oLi st . Just like our recursive methods use themselves to as p#ré ablution, this class
has another instance of itself as an instance variable: atresursive structure. How can this
be? It's a similar idea to a recursive method, where evelytuad get to a base case. Here, we
eventually get to a situation where thest instance variable isul | .

Hopefully this will make more sense as we continue lookinthiest We start with the constructor.
Like many of our constructors, this one simply rememberpatemeters in instance variables.

Consider what happens when a series of calls to the constigattade to addRat i o values to
ourRat i oLi st . (Which we will work through in class.)

Once we have seen howRat i oLi st is built up, we can consider some of the other methods.
Let’s start withget M n (and its very close cousiget Max).

We want to be able to retrieve the smallest value froRa&i oLi st object. Remember that an
object needs to be able to answer a question like this usihgtiea information in the provided
parameters and its instance variables. Here, all we hawbate/o instance variables: that i o
calledf i r st and theRat i oLi st calledr est .

Given this situation, there are two main possibilities:

1. rest isnul | , which means the onlRat i o inthisRat i oLi st isthe oneirfi rst, so
that must be the smallest one.

2. rest is notnul I, in which case there is at least one otRat i o contained inr est’s
instance variable, possibly more. So here, weraskt what its smallest value is (after all,
we’re writing a method to do that), and compare that to theevale have here ifii r st .
The smaller of those twBat i os must be the smallest in the whole list!

That's exactly what's done in the code. We have a recursivia@deoperating on our recursive
data structure. As with our recursive methods before, wadmmtify the base case: wherest
isnul | , and the recursive step: when we aqadist . get M n() .

With previous recursive methods, we had to make that eacingee call would get us closer to the
base case. The same is true here. As long as we have corstucRat i oLi st properly, each
recursive call gets us closer to the subseqienti oLi st that has aul | value for itsr est .

Forget M n andget Max, we are essentially doing a search. FoiSt ri ng andget Sum we
are visiting all of the values and building up a result.

9

CSC 523 Advanced Programming Summer 2014

The get Sum method computes the sum of the entitat i oLi st’s Rati os. It does so by
determining whether there is anythingriest . If not, the sum is trivial: it'sf i r st . Otherwise,
it's the sum off i r st with the result of our recursive call et Sum

Thet oSt ri ng method works similarly, but instead of addiRat i os together to accumulate
the sum recursively, we concatenate 8te i ng representations of eadat i o object returned
by itst oSt ri ng method.

Finally,r educeAl | doesn’t accumulate any result or search, it modifies &ath o in the list.
It also does so recursively. It reduces the st to lowest terms, usinBat i o’s r educe method.
Then, if ther est is notnul | , it makes a recursive call to reduce the rest.

10

