
Computer Science 523
Advanced Programming
The College of Saint Rose
Summer 2014

Topic Notes: Recursive Methods and Structures

You have seen in this course and in your previous work that iteration is a fundamental building
block that we can use to construct code that implements an algorithm to solve a problem. We will
next spend some time considering another fundamental building block: recursion.

The idea here is that we solve a problem by first solving one or more smaller instances of the
problem, then using those solutions, to solve the original problem.

As a simple example suppose I want to add up everyone’s midterm scores in a class ofn students.
A recursive approach to this would be to add up then − 1 scores from all but one person, giving
me a solution to a smaller instance of the same problem (a problem of sizen−1 instead ofn), then
taking that total and adding in the score of the person whose exam was initially omitted, giving me
the solution to the original problem.

The recursive approach would solve each of the subproblems recursively as well. That is, then−1
exams would be tallied by first computing the total ofn − 2 of them and adding in then − 1st. If
you think about this a bit, you’ll also realize we need some way to stop the recursion. Here, we
have two choices, either of which would work. We could say that to add up the exam scores for a
set of 1 exam, we just take that exam’s score as the answer. Or,we can say that to add up the exam
scores for a set of 0 exams results in a total score of 0.

So we can write this procedure a bit more precisely as a set of instructions:

To add scores on n exams:
if there is just one score, the answer is that exam’s score
else

compute the scores of all but 1 exam using these instructions
add in the exam that was not part of the subset computed
return that sum as the answer

Recursive Methods
For our first coding example with recursion, we first look backat an older example:

See Example: Sum1ToN

In particular, our method to compute the sum:

public static int sumNumbersTo(int limit) {

CSC 523 Advanced Programming Summer 2014

int sum = 0;
for (int number = 1; number <= limit; number++) {

sum += number;
}
return sum;

}

For the moment, forget this formula:

n
∑

i=1

i =
n(n+ 1)

2

and the fact that it led us to a much more efficient way to compute the sum. We’ll focus on a
formula that represents the iterative method above:

n
∑

i=1

i = 1 + 2 + ...+ n

The “...” in the formula is encoded in Java by thefor loop.

Alternatively, we can think about this formula recursively:

n
∑

i=1

i =

{

1 if n = 1
(
∑

n−1

i=1 i) · n otherwise

This says that we can compute the sum of the firstn numbers by applying the appropriate rule:

• If n = 1, the sum is trivial and we know the answer is 1. This is called thebase case for our
recursion.

• Otherwise, we will apply this same formula to compute the sumof the firstn − 1 numbers,
and then addn to that sum to get our answer. This is therecursive case.

In the end, we’ll need the same number of addition operationsas we did in the iterative formula.

So let’s look at this translated to a Java method:

See Example: Sum1ToNRec

public static int sumNumbersTo(int limit) {

// first, we check for the base case
if (limit == 1) return 1;

2

CSC 523 Advanced Programming Summer 2014

// otherwise, we have to make a recursive method
// call to compute the sum of the first limit-1
// numbers, then add in limit to get our answer
return sumNumbersTo(limit - 1) + limit;

}

The above method looks very simple, but it often completely confuses programmers who are not
experienced in working with recursion. Yes, the methodcalls itself to be able to compute its
answer.

How can this work? It’s the equivalent of you going up to an expert on addition and asking how to
add together a bunch of numbers. The (unsatisfying) response is “add a bunch of numbers then add
one more time”. If you knew how to add a bunch of numbers, you wouldn’t be asking in the first
place (so you ask again)! It’s like looking up a word in the dictionary only to have the dictionary
use the word in its definition.

But the key here is that each time you ask, there are fewer numbers to add up. Eventually, you will
ask the expert on addition to add a single number, to which theresponse will finally be “oh, you
have just one number there, the sum is that number.”

The same thing happens here. Your program keeps callingsumNumbersTo with smaller and
smaller values for thelimit parameter untillimit finally becomes 1, and that method returns
1. The big question is, how do we know how many times it took to get to that point? They key
idea is that your program now hasn copies of thelimit parameter, whose values range fromn
on the initial call, down to 1 on the call that triggers the base case.

I think that to understand this, we need to construct a memorydiagram (which will be done in
class).

Comparing Costs

Another thing we want to start to think more carefully about is the relative costs of different ways
to perform a computation. There are many measures of cost that can be interesting in different
contexts, but the most common arecomputational cost, the amount of work the processor needs to
perform to complete the task, andmemory cost, the amount of memory that needs to be allocated
to the program to complete the task.

These values are typically measured as a function of some input parameter or size.

We have three versions of thesumNumbersTo method that we can consider in this context:
the iterative version, the recursive version, and the one that uses the one-step formula. In these
methods, we will think of the “problem size” as the input number – the number of values we want
to add up. Subsequent discussion here will refer to this asn, even though it is namedlimit in
the formal parameter of the methods.

First, we consider the amount of computing. Here, a meaningful measure is how many arithmetic
operations are required.

For the iterative method, the addition operations are inside the loop – one per iteration. The loop

3

CSC 523 Advanced Programming Summer 2014

will executen− 1 times, so there is a total ofn− 1 additions required.

For the method that uses the formula, there is a total of 3 operations, one each of addition, mul-
tiplication, and division. Note that this value stays the same no matter whatn is. This is good,
especially for large values ofn.

For the recursive method, we need to think a little more. Eachtime the recursive case executes,
there are two operations in play – we have to do one addition and one subtraction (to compute
limit-1). This might at first seem more expensive than the iterative version, but there we ig-
nored then additions needed to manage thefor loop. There are no arithmetic operations needed
when the base case executes. So what remains is to determine how many times the recursive case
executes before we reach the base case. That number isn− 1 here.

In the first and last cases, we note that the computational cost is directly proportional ton – that
is, the computational cost scales linearly asn increases. A more formal way of saying this is that
the computational cost of these isO(n), usually read “order n” or “Big-O of n”. In the method that
uses the formula, the cost is a constant. That is, it stays thesame no matter how large a value ofn

we present. More formally, this is a method that executes inO(1) time.

The memory costs are measured by detemining how many parameters and local variables (often
calledstack variables) as well as objects and/or arrays constructed withnew (calledheap vari-
ables) are allocated. In these methods, there are no heap variables involved, so we can focus on
the formal parameters and local variables.

In the non-recursive methods, the method executes just onceto complete its work, so there is just
the one copy of each parameter and local variable. The iterative version has three such variables:
the parameter, the local variablesum, and the loop index variable. The formula version has just
the parameter. In either case, the amount of memory needed does not depend onn, so the memory
usage is constant, orO(1).

The recursive method’s memory cost does depend onn, as each recursive call results in another
copy of the parameterlimit being created on the stack. Note in particular how each method call
is still in execution until the chain of recursive method calls reaches the base case. We said earlier
that there will be a total ofn − 1 recursive calls, and at the peak depth of the recursion, alln − 1
are in execution. This means the amount of memory needed is linearly proportional ton, orO(n).

A Slightly More Interesting Example

As a next example, let’s look at a program to raise numbers to powers:

See Example: Powers

We can see that the basic idea here is to read in a couple of integers, a base and an exponent, and
then raise the base to that power. There are three methods here, all of which compute the same
thing but in different ways.

Before we look at the three methods and themain method that uses them, first a few words
(reminders, for many of you) about the ranges of values that can be represented by Java’s integer
types. Normally, we use theint data type, which uses a 32-bit 2’s complement format to represent

4

CSC 523 Advanced Programming Summer 2014

numbers between−231 and231−1. This is sufficient for the vast majority of programs. If that’s not
enough, we can move up to thelong primitive type, which uses 64 bits and can represent values
between−263 and263 − 1. You will see that the program useslong values for the exponents, and
also uses Java’s long integer literal format by placing an “L” at the end of the integer literals.long
variables can hold some really big numbers, but we can easilyexceed those limits when computing
powers. So this program uses a Java API class calledBigInteger to represent base values and
computed products, which allows for arbitrarily-large integer values to be represented precisely.

Now on to the methods.

The first,loopPower simply contains afor loop to multiplybase by itselfexponent times.
Correct, but not especially interesting.

We will focus on the others, firstrecPower. How does this one work? Clearly, if we evalu-
aterecPower(3,0), the conditionexponent==0L is true, so the method should return 1.
Suppose instead we evaluaterecPower(3,1). According to the method definition and the fact
that1!=0, we get thatrecPower(3,1) = 3*recPower(3,0), and we know the value of
recPower(3,0) is 1. Thus the final answer is3*1 or 3. The key is that we are using the facts
thatb0 = 1 andbe+1 = b*b

e to calculate powers. Because we are calculating complex powers
using simpler powers (the recursive calls each are passed anexponent one smaller than the one
with which this call was passed), we eventually get to our base case.

It sometimes helps to imagine that we are having someone elsehandle the recursive call. That
is, if I want to calculaterecPower(3,5), I ask someone else to calculaterecPower(3,4),
without caring how they do it, and then, when they give me the answer,81, multiply that answer
by 3 to get the final answer of243. It just happens that that “someone else” is using the same
method we’re writing!

Using a simple modification of the above recursive method we can get a very efficient algorithm
for calculating powers, shown infastRecPower. In particular, if we use either of the first two
methods, it will take 1024 multiplications to calculate31024. Using a slightly cleverer algorithm
we can cut this down to only 11 multiplications!

In each of the first two methods, the number of multiplications necessary is equal to the value of
the exponent. That is not the case here.

fastRecPower(3,16) = fastRecPower(9,8) // mult
= fastRecPower(81,4) // mult
= fastRecPower(6561,2) // mult
= fastRecPower(43046721,1) // mult
= 43046721 * fastRecPower(43046721,0)
= 43046721 * 1 // mult
= 43046721

Thus it only took 5 multiplications (and 4 divisions by 2) usingfastRecPower, whereas it would
have taken 16 multiplications the other way (and divisions by two can be done very efficiently in
binary).

5

CSC 523 Advanced Programming Summer 2014

In general it takes somewhere betweenlog2(exponent) and2 ∗ log2(exponent) multiplications
to compute a power this way. While this doesn’t make a difference for small values of expo-
nent, it does make a difference when exponent is large. For example, computingfastRecPow-
er(3,1024) would only take 11 multiplications, while computing it witheither of the other two
methods would take 1024 multiplications.

Why does this algorithm work? It works because it is based on the following simple rules of
exponents:

• base0 = 1

• baseexp+1 = base ∗ baseexp

• base2∗exp = (base2)exp

The key is that by rearranging the order of doing things in a clever way, we can cut down the
amount of work considerably! (Again it is possible to write the above algorithm with awhile
loop, but the above recusrive formulation is arguably easier to understand!)

Let’s think a bit more carefully about the relative costs, interms of both computation and memory.

The costs of the iterativeloopPower and straightforwardrecPower methods are just like the
iterative and recursive methods we saw above. Letn represent theexponent parameter.

The iterative method has a loop that executesn times for a computational cost ofO(n). The
memory cost is constant with just a single method call with a couple of parameters and local
variables allocated, so the memory cost isO(1).

The recursive method executes its recursive casen times, with a constant amount of work on
each of those executions, for a total computational cost ofO(n). However, each of the method
invocations results in another copy of the parameters beingcreated. So memory cost isO(n).

ThefastRecPower method is much more interesting. Each call to the method executes one of
the three cases, each of which itself results in only a constant amount of computation and one copy
of the parameters on the stack. We mentioned about that it takes somewhere betweenlog2(n) and
2 ∗ log2(n) recursive steps, so the computational and memory costs are bothO(log n).

Recursion with Arrays
Recursive methods can also be used with arrays. For example, suppose we want to find the largest
element in an array ofint. We can write a method quite easily to do this with a loop:

public static int max(int[] a) {
int ans = a[0];
for (int i=0; i<a.length; i++) {

if (a[i] > ans) ans = a[i];
}

6

CSC 523 Advanced Programming Summer 2014

return ans;
}

However, the problem can also be decomposed in a recursive manner by thinking about subarrays:

• The largest value in a subarray of size 1 is the value of that 1 element in the subarray

• The largest value in a subarray with at least 2 elements is thelarger of the value in the first
element and the largest in the subarray consisting of all butthat first element

Or as a method, where we pass in the first element of the subarray we wish to consider:

public static int maxRec(int[] a, int start) {
// base case: looking at the last element
if (start == a.length-1) return a[start];

// recursive case: max of a[start] and the
// max of the rest
int maxofRest = maxRec(a, start+1);
if (maxOfRest > a[start]) return maxOfRest;
return a[start];

}

Such a method is often combined with a helper method that tacks on the extra parameter that we
would not want a user of our method to have to include (as it would normally be 0 to start the
search for the max at position 0):

public static int max(int[] a) {

return maxRec(a, 0);
}

Similar methods can be used onStrings, which are after all, essentially arrays of characters.

Recursive Method Summary

We can both write and understand recursive programs as follows:

1. Write the base case. Convince yourself that this works correctly.

2. Write the “recursive” case.

• Make sure all recursive calls go to simpler cases than the oneyou are writing. Make
sure that the simpler cases will eventually get to a base case.

7

CSC 523 Advanced Programming Summer 2014

• Make sure that the general case will work properly if all of the recursive calls work
properly.

Recursive Data Structures
We have seen that constructs such as arrays andArrayLists allow us to group together collec-
tions of elements using a single name. Recursion affords us another mechanism to do so. We begin
this discussion with a custom class that can hold an arbitrary number of ourRatio objects.

See Example: RatioListApplet

This example looks much more complex than it really is, as much of the code supports the Swing
GUI interface.

There are three classes here, and we will examine them one at atime.

First, theRatio class is the one we saw earlier in the course, but with some of the verbose
comments stripped out and a few methods added. One of these isthe non-destructiveadd method
you wrote for an earlier assignment.

One of a bit more interest is thereduce method. Hopefully you recall that to reduce a fraction
to lowest terms, you find the greatest common divisor (GCD) (sometimes called the “greatest
common factor”) of the numerator and the denominator – the largest number that divides both
evenly – then divide both the numerator and denominator by that GCD. One method to compute a
GCD is calledEuclid’s Method, and that is what is implemented by thegcd method in theRatio
class. This is a recursive method!

The first line of the method is the base case: the GCD of any number with 0 is that other number.
The second line is just a way to swap the order of the parameters when the first is larger than the
second. The third line is the recursive case that applies Euclid’s algorithm. The key thing we need
to notice here is that the parameters will always become smaller on each recursive step. Eventually,
the base case will come into play.

TheRatioListApplet class implements a kind of “ratio list calculator” program.The idea is
that we have a display area that can show a single ratio at any given time. We can type in numbers
to change that ratio, we can reduce that ratio to lowest terms, we can store the ratio in the display
in a list of ratios, we can compute and display results of a fewoperations on the list of ratios (the
sum, the min, and the max), and finally we can reduce all ratiosin the list to lowest terms.

The vast majority of the code inRatioListApplet constructs and manages the GUI. We are
most interested in its use of the other class in this project,theRatioList to keep track of the list
of ratios. Before we look at its implementation, let’s see howit’s used.

TheRatioList instance variable starts out asnull, indicating that there are no ratios in the
list. New ratios are added to the list in the first part of theactionPerformed method. The
construction is different from those we have seen before:

ratios = new RatioList(newOne, ratios);

8

CSC 523 Advanced Programming Summer 2014

wherenewOne is aRatio just constructed from the values in the text fields of the display.

Think about what we see here: the constructor for theRatioList takes aRatioList as a
parameter. We then replace our reference to theRatioList that we passed in with the new one
that was just returned.

Let’s shift our attention to theRatioList class to see how this constructor is implemented and
what instance variables we find there. To this point, when we’ve wanted to store a collection of
objects, we have used arrays andArrayLists, but we find neither of those inRatioList.
Instead, we have an instance variable to hold a singleRatio object, and another to hold another
RatioList. Just like our recursive methods use themselves to as part ofthe solution, this class
has another instance of itself as an instance variable: it isa recursive structure. How can this
be? It’s a similar idea to a recursive method, where eventually we get to a base case. Here, we
eventually get to a situation where therest instance variable isnull.

Hopefully this will make more sense as we continue looking atthis. We start with the constructor.
Like many of our constructors, this one simply remembers itsparameters in instance variables.

Consider what happens when a series of calls to the constructor is made to addRatio values to
ourRatioList. (Which we will work through in class.)

Once we have seen how aRatioList is built up, we can consider some of the other methods.
Let’s start withgetMin (and its very close cousin,getMax).

We want to be able to retrieve the smallest value from aRatioList object. Remember that an
object needs to be able to answer a question like this using only the information in the provided
parameters and its instance variables. Here, all we have arethe two instance variables: theRatio
calledfirst and theRatioList calledrest.

Given this situation, there are two main possibilities:

1. rest is null, which means the onlyRatio in thisRatioList is the one infirst, so
that must be the smallest one.

2. rest is notnull, in which case there is at least one otherRatio contained inrest’s
instance variable, possibly more. So here, we askrest what its smallest value is (after all,
we’re writing a method to do that), and compare that to the value we have here infirst.
The smaller of those twoRatios must be the smallest in the whole list!

That’s exactly what’s done in the code. We have a recursive method operating on our recursive
data structure. As with our recursive methods before, we canidentify the base case: whenrest
is null, and the recursive step: when we callrest.getMin().

With previous recursive methods, we had to make that each recursive call would get us closer to the
base case. The same is true here. As long as we have constructed ourRatioList properly, each
recursive call gets us closer to the subsequentRatioList that has anull value for itsrest.

ForgetMin andgetMax, we are essentially doing a search. FortoString andgetSum, we
are visiting all of the values and building up a result.

9

CSC 523 Advanced Programming Summer 2014

The getSum method computes the sum of the entireRatioList’s Ratios. It does so by
determining whether there is anything inrest. If not, the sum is trivial: it’sfirst. Otherwise,
it’s the sum offirst with the result of our recursive call togetSum.

ThetoString method works similarly, but instead of addingRatios together to accumulate
the sum recursively, we concatenate theString representations of eachRatio object returned
by itstoString method.

Finally,reduceAll doesn’t accumulate any result or search, it modifies eachRatio in the list.
It also does so recursively. It reduces thefirst to lowest terms, usingRatio’s reducemethod.
Then, if therest is notnull, it makes a recursive call to reduce the rest.

10

