
Computer Science 523
Advanced Programming
The College of Saint Rose
Summer 2014

Topic Notes: Linked Lists and Iterators

Linked Lists
Just as we saw that other types of structures could be made generic, the same is true of the “ratio
list” recursive structure we recently examined. It is an example of a fundamental data structure
that is useful in many contexts called asingly linked list.

The name singly linked list might be self-explanatory, but let’s say a little more about it. The
reason for calling this data structure a list is because it allows us to store a list of items. We call
it singly linked because the way it is represented allows us to traverse it in one direction only. To
“walk through” the list we saw always consideredfirst first; then we stepped through the list
until we reached the end. We never moved backward through thelist.

When we build a general-purpose data structure to hold a collection of items, there are certain
types of functionality we want them to have. We need to be ableto:

• add a new item to the collection

• remove an item from the collection

• tell whether the collection is empty

• get at the individual items in the collection

We can think of a general-purpose linked list:

list elements .
.
.

.

.

.

.

.

.

.

.

.

head

See Example: SimpleLinkedList

The list structure is a reference to the firstlist node.

The structure that makes up a list node has two fields:



CSC 523 Advanced Programming Summer 2014

1. value: the listelement, or value, which is stored at that list node’s position in thelist.

2. next: a pointer to the next list node, ornull for the last node.

So the data fields for a very basic linked structure could looklike this:

class SimpleListNode<E> {

protected E value;
protected SimpleListNode<E> next;

}

public class SimpleLinkedList<E> {

protected SimpleListNode<E> head;
}

A few things to note right away about these:

• Thepublic qualifier is not specified in theSimpleListNode<E> class definition, since
we aren’t allowing regular users to create one of these. Users can only aSimpleLinkedList<E>,
and the methods of that class will in turn create theSimpleListNode<E> objects.

• TheSimpleListNode<E> is a recursive data structure.

So if we want to create one of these, it’s very easy. We just construct aSimpleLinkedList<E>
and set itshead to null.

public SimpleLinkedList() {
head = null;

}

We then have a list with no elements.

How about adding an element? This involves two steps:

1. construct a new list node for the element (a node whosevalue contains the element we
would like to store in our list)

2. insert the new list node into the list

2



CSC 523 Advanced Programming Summer 2014

Let’s think about what this will mean. When we add our first element, let’s call itA, we want this
list to go from just an emptyhead reference, to a node pointed at byhead which hasA as its
value andnull as itsnext.

Now, we add another element, sayB. We have two choices. We can add it either before or afterA

in the list.

Now, we add another element,C. We have three choices: beginning, middle, or end. In general,
we can add atposition 0, 1, or 2.

So let’s see how we can support these with Java code.

Construction of the new list node is easy, once we know what to set itsnext pointer to. Here’s a
constructor:

public SimpleListNode(E value, SimpleListNode<E> next) {
this.value = value;
this.next = next;

}

We will soon see the need to be able to set and retrieve the elementvalue from a list node and its
next pointer. We’ll call the accessorsvalue() andnext(), and the mutatorssetValue()
andsetNext().

If our linked list is going to be as general as theArrayList structure we have already been using,
we will need to allow additions to any position in our list. Thus, we will develop a generaladd
method that deals with all three of the cases described above: the start of the list, somewhere in the
middle, and at the end.

We’ll need to provide ouradd method with an index and an object to become our list element:

public void add(int pos, E obj) {...}

Each step of the way, we need to provide some error checking. In particular, we can only add
at item at positioni if its addition will result in a list containing at leasti + 1 elements (we will
designate positions starting at 0, as is done with arrays andArrayLists). However, our list
as we are developing it initially does not have a direct way tocount the number of elements it
contains, so this check will be done in a few locations in the code. If at some point we determine
that the position is invalid, the method will throw anIndexOutOfBoundsException, just
like an array orArrayList.

if (pos < 0) {
throw new IndexOutOfBoundsException("Attempt to add at negative position

}

Next, we check if there’s an empty list. If so,pos should be 0. If not, we throw an exception.

3



CSC 523 Advanced Programming Summer 2014

Adding at position 0 is easy. We construct a newSimpleListNode containing our element,
using the oldhead as itsnext. Note that this works for an empty list, in which casehead is
null, or the case when there is already a previoushead, in which case the oldhead becomes
the second node in the list.

if (pos == 0) {
head = new SimpleListNode<E>(obj, head);
return;

}

It gets more complicated if we want to insert in the middle or at the end (pos != 0). We need to
search for the item after which we want to insert, then do the insertion.

int i = 0;
SimpleListNode<E> finger = head;
while (i < pos-1) {

i++;
finger = finger.next();
if (finger == null) {

throw new IndexOutOfBoundsException("Attempt to add at position " +
}

}
finger.setNext(new SimpleListNode<E>(obj, finger.next()));

There is also a “default”add method that doesn’t take a position parameter. In this case,we add
at the start of the list. This is done quite simply by calling the more generaladd method already
provided, passing apos of 0.

Now that we can build up our lists, let’s consider a few accessors. First,get. Again, we’ll allow
users toget the element at any position.

public E get(int pos) {

if (pos < 0) {
throw new IndexOutOfBoundsException("Attempt to get from a negative position

}

SimpleListNode<E> finger = head;
int i = 0;

if (head == null) {
throw new IndexOutOfBoundsException("Attempt to get from an empty list");

}

while (i < pos) {

4



CSC 523 Advanced Programming Summer 2014

i++;
finger = finger.next();
if (finger == null) {

throw new IndexOutOfBoundsException("Attempt to get element " + pos
}

}
return finger.value();

}

We can write aset method almost identical to this, except that instead of returning the value at
the desired position, we just set it and return the old value.

So now aboutcontains? We need to search through looking for the element until we find it or
find the end of the list.

The basic structure is the same asget. We have a “finger” tracking our progress through the list.
Here, we never encounter an error condition and throw and exception – we always returntrue or
false.

public boolean contains(E obj) {

// easy when the list is empty
if (head == null) return false;

// otherwise look for it
SimpleListNode<E> finger = head;
while (finger != null) {

if (finger.value().equals(obj)) return true;
finger = finger.next();

}
return false;

}

Let’s do an easy one:size().

public int size() {
SimpleListNode<E> finger = head;
int count = 0;

// count up the number of list nodes until we get a null next
while (finger != null) {

count++;
finger = finger.next();

}

return count;
}

5



CSC 523 Advanced Programming Summer 2014

That was easy, but quite inefficient. We could alternately keep a count of the number of elements
in the list and return that immediately, but that value wouldbe extra memory required for every list
we allocate, and we would have to update that count in all methods that modify the list.

Now, let’s consider a harder one:remove(). We could remove items by value or by index. We’ll
just implement by index.

There are a number of cases to consider:

1. remove the only item from a list

2. remove the first item in a list from a list with at least two elements

3. remove the last item in a list from a list with at least two elements

4. remove an item from the middle of a list from a list with at least two elements

public E remove(int pos) {

First, we make sure we’re not removing from a negative position or from an empty list, and throw
exceptions if so.

Next, we can take care of the first item case.

if (pos == 0) {
E retval = head.value();
head = head.next();
return retval;

}

In other cases, we need to find the node containing the item we want to remove and adjust some
references to point “around” the node we are removing.

So we need to have our “finger” on the elementbefore the one we want to remove, since that’s the
one whosenext pointer will need to be adjusted.

// remove an item at a non-first position
SimpleListNode<E> finger = head;
int count = 0;
// find the item before the one we want to remove
while (count < pos-1) {

count++;
finger = finger.next();
if (finger == null) {

throw new IndexOutOfBoundsException("Attempt to remove element at index
}

}

6



CSC 523 Advanced Programming Summer 2014

// finger is pointing to item pos-1
// make sure there is something at pos
if (finger.next() == null) {

throw new IndexOutOfBoundsException("Attempt to remove element at index
}
E retval = finger.next().value();
finger.setNext(finger.next().next());
return retval;

Removing everything is very simple.

public void clear() {
head = null;

}

What about all those list nodes? We still have references to them! Not to worry, Java’s garbage
collector will clean them up.

However, not all languages are garbage collected like Java.In C or C++, you need to be careful to
free (in C) ordelete (in C++) all of the objects you no longer need.

Let’s consider the complexity of our operations.

• add(0) : O(1)

• add(i) : O(i)

• add(n) : O(n)

• get/set(0) : O(1)

• get/set(i) : O(i)

• get/set(n-1) : O(n)

• remove(0) : O(1)

• remove(i) : O(i)

• remove(n-1) : O(n)

• get all values in sequence :O(n2) (hey, we need anIterator! see below)

• size() : O(n) (hey, we can do better if we remember this)

How do these compare to similar operations onArrayLists?

• adding at the front is easier (ArrayList is O(n) since all items need to be shifted up).

7



CSC 523 Advanced Programming Summer 2014

• adding at the end is harder (ArrayList is O(1) except when theArrayList’s internal
array structure is full, in which case it isO(n)).

• adding in the middle, it depends where.

• the cost is consistent, though, since there is no reallocation and copying to grow the structure.

• removing at the front is easier (ArrayList is O(n), since all items need to be shifted
down).

• removing at the end is harder (ArrayList is O(1)).

• removing in the middle is similar.

• getting/setting an arbitrary value is harder (ArrayList is O(1)).

What about space usage?

• there are no empty slots like we have inArrayLists

• but there’s an extra reference for each object stored! That’sO(n) space overhead.

We still have a couple of problems with this implementation that we’d like to address. First, the
O(n2) traversal is no good – we need anIterator...

Iterators

How do we “visit” each item in a collection? With aArrayList, or an array, it’s easy. We can
write afor loop:

public <T> void traverse(ArrayList<T> v) {
int i;

for (i=0; i<v.size(); i++) {
T visitme = v.get(i);
// do something with visitme

}
}

But imagine if someone has changed the implementation ofArrayList. It no longer has an
array, but a linked structure, like ourSimpleLinkedList.

To get access to thenth element, we need to visit the firstn − 1 elements. If ourArrayList
contained one of these linked structures instead of an array, our traverse method suddenly becomes
very inefficient.

This is not good. What is the complexity ofget()? In order to get the item at positioni, we have
to start at the beginning and we have to follow links until we find the right element.

8



CSC 523 Advanced Programming Summer 2014

What we want to do is to use the previous value returned, and take the one pointed to by the list
element we just used to get that previous value. But how? We don’t have that information!

We often need a way of cycling through all of the elements of a data structure. We will use another
object type, one which knows the details of the structure we are traversing and which can remember
the status of the progress through our traversal. These are callediterators and Java provides exactly
what we need: thejava.util.Iterator<E> interface.

A data structure can create an object that implements theIterator interface, which can be used
to cycle through the elements. For example, built-in Java classArrayList has method:

public Iterator<E> iterator()

that we can print out the elements ofArrayList<E> v as follows:

for (Iterator<E> iter=v.iterator(); iter.hasNext(); )
System.out.println(iter.next());

Or in Java 5 and up, if our class implements theIterable interface (which simply requires
the methoditerator) we can use a “for each” loop:

for (E item: v) {
System.out.println(item);

}

Important Notes:

• Never change the state of a data structure with an active works, or you may end up in an
infinite loop!

• There is also aremove() methos in Java’sIterator interface, but we will ignore that
for now, as not all iterators provide it.

• Iterators guarantee a predictable and consistent order of the elements returned.

Remember, an iterator must remember some state about the collection it’s visiting. With an
ArrayList iterator, we just needed to remember the index of the next item to be returned. Re-
membering the index doesn’t help us with linked lists. We need to remember something about the
internals of the list to make this work. The most useful thingto remember here is the list node –
that “finger” we used in most of the methods we’ve looked at.

Again, it’s not a public class, since no one except ourSimpleLinkedList is allowed to con-
struct one.

We need to have data to support the regular iterator operations, plus be able to reset the iterator, so
we need to have our iterator remember the head of the list and the “finger”:

9



CSC 523 Advanced Programming Summer 2014

protected SimpleListNode<E> current;
protected SimpleListNode<E> head;

and to construct one, we need to have the head of the list passed in:

public SimpleListIterator(SimpleListNode<E> t) {
head = t;
current = head;

}

So thecurrent pointer always points to the next node whose value hasnot yet been returned.
From this, we can construct the remaining methods:

public boolean hasNext() {
return current != null;

}

public E next() {
E temp = current.value();
current = current.next();
return temp;

}

And in theSimpleLinkedList class, we have a method to create one:

public Iterator<E> iterator() {
return new SimpleListIterator<E>(head);

}

We also make ourSimpleLinkedList implementIterable so we can use it in “for each”
loops.

In subsequent courses, you will see variations on linked lists (including doubly linked lists, which
have references between adjacent list nodes in both directions), and more carefully consider the
differences among arrays,ArrayLists, different types of linked lists, and more advanced data
structures. While many of these structures provide the same operations and can often be used
interchangeably, it is very important to know which will be most efficient for a given problem,
both in terms of memory and computational costs. So stay tuned!

Lists in the Java API
Java’s builtin API provides a variety of generic classes that perform list-like functionality. Many of
these can be used interchangeably because they implement thejava.util.List<E> interface.

10



CSC 523 Advanced Programming Summer 2014

The List interface defines a set of common operations that a number of API classes provide.
Programmers can also write their own classes that satisfy theList interface. As long as a user of
a class that implements the interface restricts his or her usage to the methods specified in the inter-
face, different implementations can be swapped in with the only change being in the construction
of the object that implementsList. Consider this example:

See Example: ListInterfaceDemo

We create lists of three of the types that implement theList interface and then use them in various
ways. The main thing to notice here is that the name of the actual type of the list being used (in this
case,ArrayList, Vector, andLinkedList) appears only when constructing each list. We
could change any of those to any other type that implements theList interface, and the remaining
code would continue to work unchanged.

Recall that different underlying structures do different things more or less efficiently than others,
so depending on which operations we expect to use, it might make more sense to use one structure
over another. But by writing as much of our code using only the methods provided by an interface
common to the options, we can switch among actual implementations later with minimal effort!

11


