Computer Science 523

Advanced Programming

The College of Saint Rose
Summer 2014

Topic Notes: Linked Lists and lterators

Linked Lists

Just as we saw that other types of structures could be ma@eigethe same is true of the “ratio
list” recursive structure we recently examined. It is anmeghke of a fundamental data structure
that is useful in many contexts callediagly linked list.

The name singly linked list might be self-explanatory, leitsl say a little more about it. The
reason for calling this data structure a list is becausdawal us to store a list of items. We call
it singly linked because the way it is represented allowsousaverse it in one direction only. To
“walk through” the list we saw always consideredr st first; then we stepped through the list
until we reached the end. We never moved backward througlsthe

When we build a general-purpose data structure to hold actigfeof items, there are certain
types of functionality we want them to have. We need to be t&ble

e add a new item to the collection
e remove an item from the collection
¢ tell whether the collection is empty

e get at the individual items in the collection

We can think of a general-purpose linked list:

B OC R nC R N S

N

See Example: SimpleLinkedList
The list structure is a reference to the fiist node.

The structure that makes up a list node has two fields:

CSC 523 Advanced Programming Summer 2014

1. val ue: the listelement, or value, which is stored at that list node’s position in libe

2. next : a pointer to the next list node, aul | for the last node.
So the data fields for a very basic linked structure could ldakthis:

cl ass Sinpl eLi st Node<E> {

protected E val ue;
protected SinpleLi st Node<E> next;

}

public class SinpleLinkedList<E> {

protected SinplelLi st Node<E> head,;
}

A few things to note right away about these:

e Thepubl i c qualifier is not specified in th8i npl eLi st Node<E> class definition, since
we aren’t allowing regular users to create one of these.dtseronly &i npl eLi nkedLi st <E>,
and the methods of that class will in turn create $herpl eLi st Node<E> objects.

e TheSi npl eLi st Node<E> is a recursive data structure.

So if we want to create one of these, it’s very easy. We jussttoat aSi npl eLi nkedLi st <E>
and set ithead tonul | .

public SinpleLinkedList() {
head = nul |;

}

We then have a list with no elements.

How about adding an element? This involves two steps:

1. construct a new list node for the element (a node wivadeue contains the element we
would like to store in our list)

2. insert the new list node into the list

CSC 523 Advanced Programming Summer 2014

Let’s think about what this will mean. When we add our first edain let’s call itA, we want this
list to go from just an empthead reference, to a node pointed at bgad which hasA as its
val ue andnul | asitsnext .

Now, we add another element, sBy We have two choices. We can add it either before or after
in the list.

Now, we add another elemerit, We have three choices: beginning, middle, or end. In génera
we can add gposition 0, 1, or 2.

So let’s see how we can support these with Java code.

Construction of the new list node is easy, once we know whagttdsnext pointer to. Here’s a
constructor:

public SinplelListNode(E val ue, SinplelListNode<E> next) {
this.value = val ue;
thi s. next = next;

We will soon see the need to be able to set and retrieve theealeral ue from a list node and its
next pointer. We'll call the accessoksal ue() andnext (), and the mutatorset Val ue()
andset Next () .

If our linked list is going to be as general as ther ayLi st structure we have already been using,
we will need to allow additions to any position in our list. (d) we will develop a generaldd
method that deals with all three of the cases described abtuwstart of the list, somewhere in the
middle, and at the end.

We’ll need to provide ouadd method with an index and an object to become our list element:
public void add(int pos, E obj) {...}

Each step of the way, we need to provide some error checkimgpaiticular, we can only add
at item at position if its addition will result in a list containing at leastt- 1 elements (we will
designate positions starting at 0, as is done with arraysAamayLi st s). However, our list
as we are developing it initially does not have a direct wagdant the number of elements it
contains, so this check will be done in a few locations in theec If at some point we determine
that the position is invalid, the method will throw amdexQut Of BoundsExcept i on, just
like an array ofAr r ayLi st .

if (pos < 0) {
t hrow new | ndexQut Of BoundsException("Attenpt to add at negative positic
}

Next, we check if there’s an empty list. If Spos should be 0. If not, we throw an exception.

3

CSC 523 Advanced Programming Summer 2014

Adding at position 0O is easy. We construct a nSimpl eLi st Node containing our element,
using the oldhead as itsnext . Note that this works for an empty list, in which casead is
nul | , or the case when there is already a previbaad, in which case the oltiead becomes
the second node in the list.

if (pos == 0) {
head = new Si npl eLi st Node<E>(0obj, head);
return;

It gets more complicated if we want to insert in the middle othe end pos != 0). We need to
search for the item after which we want to insert, then doniserition.

int i =0;
Si mpl eLi st Node<E> finger = head,;
while (i < pos-1) {
i ++;
finger = finger.next();
if (finger == null) {
t hrow new I ndexQut Of BoundsException("Attenpt to add at position " -

}

}
finger. set Next (new Si npl eLi st Node<E>(obj, finger.next()));

There is also a “defaultadd method that doesn’t take a position parameter. In this cesadd
at the start of the list. This is done quite simply by callihg more generaddd method already
provided, passing pos of 0.

Now that we can build up our lists, let's consider a few acoessFirst,get . Again, we’ll allow
users taget the element at any position.

public E get(int pos) {

if (pos < 0) {
t hrow new | ndexQut Of BoundsException("Attenpt to get froma negative pos
}

Si nmpl eLi st Node<E> finger = head,;
int i =0;

if (head == null) {
t hrow new | ndexQut Of BoundsException("Attenpt to get froman enpty |ist"
}

while (i < pos) {

CSC 523

We can write aset method almost identical to this, except that instead ofrnétg the value at

Advanced Programming Summer 2014
i ++;
finger = finger.next();
if (finger == null) {
t hrow new | ndexQut Of BoundsException("Attenpt to get el enent
}
}

return finger.value();

the desired position, we just set it and return the old value.

So now aboutont ai ns? We need to search through looking for the element until weifior

find the end of the list.

The basic structure is the samegaet . We have a “finger” tracking our progress through the list.
Here, we never encounter an error condition and throw anepgan — we always returnr ue or

fal se.

public bool ean contains(E obj) {

/] easy when the list is enpty
if (head == null) return fal se;

/! otherw se | ook for it

Si npl eLi st Node<E> fi nger = head,

while (finger !'= null) {
if (finger.value().equals(obj)) return true;
finger = finger.next();

}

return fal se;

Let's do an easy onesi ze() .

public int size() {

Si mpl eLi st Node<E> finger = head;
int count = O;

/1 count up the nunber of |ist nodes until we get a nul

while (finger '= null) {
count ++;
finger = finger.next();

}

return count;

"+ pos

CSC 523 Advanced Programming Summer 2014

That was easy, but quite inefficient. We could alternatelpka count of the number of elements
in the list and return that immediately, but that value wdagdextra memory required for every list
we allocate, and we would have to update that count in all atsthhat modify the list.

Now, let’s consider a harder oneenove() . We could remove items by value or by index. We'll
just implement by index.

There are a number of cases to consider:

remove the only item from a list
. remove the first item in a list from a list with at least twemkents

remove the last item in a list from a list with at least twereénts

Bowonop

remove an item from the middle of a list from a list with adéetwo elements
public E renove(int pos) {

First, we make sure we’re not removing from a negative pmsitir from an empty list, and throw
exceptions if so.

Next, we can take care of the first item case.

if (pos == 0) {
E retval = head. val ue();
head = head. next();
return retval;

In other cases, we need to find the node containing the itemaw t0 remove and adjust some
references to point “around” the node we are removing.

So we need to have our “finger” on the elembefore the one we want to remove, since that's the
one whosanext pointer will need to be adjusted.

/1l renmpove an itemat a non-first position
Si mpl eLi st Node<E> fi nger = head;
int count = O;
/!l find the item before the one we want to renove
while (count < pos-1) {

count ++;

finger = finger.next();

if (finger == null) {

t hrow new | ndexQut Of BoundsException("Attenpt to renpbve el enent

}

at

CSC 523

I f

Advanced Programming Summer 2014

inger is pointing to item pos-1

/1 make sure there is sonething at pos

if

}

finger.next() == null) {
t hrow new | ndexQut Of BoundsException("Attenpt to renove el ement at

E retval = finger.next().value();

fing
retu

er.set Next (finger.next().next());
rn retval;

Removing everything is very simple.

public v
head

}

What about all

oid clear() {
= null;

those list nodes? We still have referenceseimthNot to worry, Java’s garbage

collector will clean them up.

However, not all languages are garbage collected like Jav@.or C++, you need to be careful to
free (in C) ordel et e (in C++) all of the objects you no longer need.

Let’'s consider the complexity of our operations.

e add(0) :
e add(i) :
e add(n) :
e get/set
e get/set
e get/set
e renove(
e renove(

e renove(

o(1)

O(i)

O(n)

(0) :0(1)
(i) 1 0@)
(n-1) : O(n)
0) : O(1)

i) :0()
n-1) : O(n)

e get all values in sequenceQ(n?) (hey, we need aht er at or ! see below)

e size() :

O(n) (hey, we can do better if we remember this)

How do these compare to similar operationsfom ayLi st s?

e adding at

the front is easief(r ayLi st is O(n) since all items need to be shifted up).

7

i nde>

CSC 523 Advanced Programming Summer 2014

e adding at the end is hardeir(r ayLi st is O(1) except when thér r ayLi st’s internal
array structure is full, in which case it3(n)).

e adding in the middle, it depends where.
e the costis consistent, though, since there is no reallmeaind copying to grow the structure.

e removing at the front is easieA(r ayLi st is O(n), since all items need to be shifted
down).

e removing at the end is hardeir(r ayLi st is O(1)).
e removing in the middle is similar.

e getting/setting an arbitrary value is hardér ¢ ayLi st is O(1)).
What about space usage?

e there are no empty slots like we haveAnr ayLi st s

e but there’s an extra reference for each object stored! $hHt:) space overhead.

We still have a couple of problems with this implementatibattwe’d like to address. First, the
O(n?) traversal is no good — we need kner at or ...

Iterators

How do we “visit” each item in a collection? With/Ar r ayLi st, or an array, it's easy. We can
write af or loop:

public <T> void traverse(ArrayList<T> v) {
int i;

for (i=0; i<v.size(); i++) {
T visitme = v.get(i);
/1l do something with visitne

}
}

But imagine if someone has changed the implementatiofrofayLi st . It no longer has an
array, but a linked structure, like o& npl eLi nkedLi st .

To get access to the’" element, we need to visit the first— 1 elements. If ourAr r ayLi st
contained one of these linked structures instead of an,auayraverse method suddenly becomes
very inefficient.

This is not good. What is the complexity gét () ? In order to get the item at positiopwe have
to start at the beginning and we have to follow links until welfthe right element.

8

CSC 523 Advanced Programming Summer 2014

What we want to do is to use the previous value returned, aredttekone pointed to by the list
element we just used to get that previous value. But how? W& klave that information!

We often need a way of cycling through all of the elements adta dtructure. We will use another

object type, one which knows the details of the structurengdraversing and which can remember
the status of the progress through our traversal. Thesabeeiteratorsand Java provides exactly

what we need: theava. uti |l .|t erat or <E> interface.

A data structure can create an object that implementbtleg at or interface, which can be used
to cycle through the elements. For example, built-in Jagasélr r ayLi st has method:

public Iterator<E> iterator()
that we can print out the elements/Afr ayLi st <E> v as follows:

for (lterator<E> iter=v.iterator(); iter.hasNext();)
Systemout.println(iter.next());

Orin Java 5 and up, if our class implements thesr abl e i nt er f ace (which simply requires
the method t er at or) we can use a “for each” loop:

for (Eitem v) {
Systemout.printin(item;
}

Important Notes:

e Never change the state of a data structure with an activesyorkyou may end up in an
infinite loop!

e There is also aenove() methos in Java’'st er at or interface, but we will ignore that
for now, as not all iterators provide it.

e | t er at or s guarantee a predictable and consistent order of the etemetuarned.

Remember, an iterator must remember some state about theetowll it's visiting. With an
ArraylLi st iterator, we just needed to remember the index of the next itebe returned. Re-
membering the index doesn't help us with linked lists. Wedeeremember something about the
internals of the list to make this work. The most useful thiogemember here is the list node —
that “finger” we used in most of the methods we've looked at.

Again, it's not a public class, since no one except 8unpl eLi nkedLi st is allowed to con-
struct one.

We need to have data to support the regular iterator opespus be able to reset the iterator, so
we need to have our iterator remember the head of the listrentfihger”:

9

CSC 523 Advanced Programming Summer 2014

protected SinpleListNode<E> current;
protected Sinpl eLi st Node<E> head;

and to construct one, we need to have the head of the listgpasse

public SinpleListlterator(SinplelListNode<E> t) {
head = t;
current = head,

So thecur r ent pointer always points to the next node whose valuerohset been returned.
From this, we can construct the remaining methods:

public bool ean hasNext () {
return current != null

}

public E next() {
E tenp = current.val ue();
current = current.next();
return tenp;

And in theSi npl eLi nkedLi st class, we have a method to create one:

public Iterator<E> iterator() {
return new Sinpl eListlterator<E>(head);

}

We also make ou®i npl eLi nkedLi st implementl t er abl e so we can use it in “for each”
loops.

In subsequent courses, you will see variations on linkesl {iacluding doubly linked lists, which
have references between adjacent list nodes in both dinsyfiand more carefully consider the
differences among arraydy r ayLi st s, different types of linked lists, and more advanced data
structures. While many of these structures provide the sgmeatons and can often be used
interchangeably, it is very important to know which will beost efficient for a given problem,
both in terms of memory and computational costs. So staydiune

Listsin the Java API

Java’s builtin API provides a variety of generic classes pleaform list-like functionality. Many of
these can be used interchangeably because they implere¢rivh. ut i | . Li st <E> interface.

10

CSC 523 Advanced Programming Summer 2014

The Li st interface defines a set of common operations that a numbePbfclasses provide.
Programmers can also write their own classes that satisflyitet interface. As long as a user of
a class that implements the interface restricts his or hegeuto the methods specified in the inter-
face, different implementations can be swapped in with tilg change being in the construction
of the object that implements st . Consider this example:

See Example: ListinterfaceDemo

We create lists of three of the types that implementhst interface and then use them in various
ways. The main thing to notice here is that the name of theahtstpe of the list being used (in this
caseArrayli st, Vect or, andLi nkedLi st) appears only when constructing each list. We
could change any of those to any other type that implemeatsitht interface, and the remaining
code would continue to work unchanged.

Recall that different underlying structures do differenngfs more or less efficiently than others,
so depending on which operations we expect to use, it migkémeore sense to use one structure
over another. But by writing as much of our code using only tle¢hmods provided by an interface
common to the options, we can switch among actual implertientalater with minimal effort!

11

