Computer Science 523

Advanced Programming
The College of Saint Rose

Summer 2014

Topic Notes: Classes

So far, our example programs have operated on da&avariables and parameters) that we can
categorize in just two ways:

e primitive types, such aisnt , doubl e, char

e object types, such &t ri ng, Scanner , Random Deci nmal For mat

We next focus on these object types a bit more. In particuarwill introduce our own object
types into our programs.

Objectsand Classes

Every object in a Java program is an entity that can contaimfields— which are like the variables
we've been using in our programs, ameéthodswhich operate on the data in those fields.

The idea of an object is central to thbject-oriented programmingaradigm, which has been very
popular since being introduced a few decades ago.

The idea is that we write program components, catliedseswhich represent templates for the
objectswe wish to represent in our program. For each object, we decfields that are used to
represent the state of the object and methods that allovetatet to be queried or modified.

The text includes an example of an alarm clock. They came tipanlist of fields that can be used
to describe the state of an alarm clock. It is similar to tiss |

e the current hour (0-23)

the current minute (0-59)

the current second (0-59)

the alarm hour (0-23)

the alarm minute (0-59)

the alarm status (on or off)

And some methods that can be used to modify the state of tha alack:

CSC 523 Advanced Programming Summer 2014

set current time

set alarm time

disable alarm

enable alarm

stop currently sounding alarm
We might also consider some methods to query the currert ctalhe alarm:

e get current time
e getalarmtime

e get alarm status (on or off)

And then the alarm clock might have some other things it doests own” — its state changes as
the time proceeds:

e increment time by 1 second

e start sounding alarm

In Java, the functionality of an object is described inlass We have been writing classes all
semester as containers for ami n, and recently, a few other methods. It turns out that thigss |
a small fraction of what a Java class can be used to do.

We look at a mechanism to achieve this by a simpler examplesi@enthis example, which we
could have written much eatrlier in the semester:

See Example: RatiosNoClass

This program maintains information about ratios of integ@ues. We create two ratios, each rep-
resented by 2 nt variables, and print them, modify them, and compute thesimdal equivalents.

But with a class that representdRat i o object, we carencapsulateghe numbers (the numerator
and denominator) into fields, and provide methods to coatstthe constructor(s), access (the
accessor methodisand modify (thenutator methodsthe fields.

See
See Example: Ratios

and the extensive comments within for details.

Object Orientation

CSC 523 Advanced Programming Summer 2014

The key to successful object-oriented programming is tatileand design the objects in the
problem. Looking first at the ratios example, it is essentialotice that thdRat i o class defines
the data and operations related to a single ratio. It doekrmmt or care how or why the ratios are
being used. It simply defines a ratio and methods that operatme. It is up to other code — in
this case themai n method in theRat i os class — to determine when and wRait i 0 objects are
instantiated and how they are used.

The text shows a popular metaphor for a class definition: tlokie cutter. | like another: a file
cabinet of forms and instructions. Think of the class as atenapy of a form that contains
information about an object, how to create one, and insomstfor how the object works. Each
time we need a new instance of the object, we make a copy ofdimatand use it to keep track of
the details of that object.

As a further example, let’s consider a program intended épkeack of a series of items purchased
in a store. Each item has a name, a unit price, and a quantithased by a customer. Our program
will read in a series of these items and track the most expeyisiast expensive, the largest quantity
purchased, and the largest total cost (unit price timestguanFor simplicity, we will break any
ties by the first encountered. So if the most expensive itesh $8.50 but there are two different
items each priced at $9.50, we will keep the first and ignogestrtond.

We will make use of a class that represents one of these itévaswill then be able to create an
instance of this class for each such item. We can add acoestbods to retrieve the information
we need to implement our program.

See Example: PurchaseTracker

One additional item here is the use oftkss variablein the Pur chasedl t emclass. The
Deci mal For mat object we declare and construct with theat i ¢ qualifier is shared among
all instances of the class, no matter how many we create.

General Purpose Classes

The few custom classes we have seen so far have been devldopedy specific situations. The
Rat i o class stores a ratio, but isn’'t useful for much else. Phechasedl t emclass in the

purchase tracker example containSta i ng, adoubl e, and an nt, all used for very specific
purposes.

Part of a good object-oriented design is to find places wheream write some software (in our
case, a Java class) that might be useful in situations bey@nane at hand. It turns out there are
many simple and no-so-simple structures that arise in mantegts, and rather than developing a
new Java class each time we need one, we strive to re-usehatedready exist. Or if one does
not exist, develop one that will satisfy needs of future paogmers as well.

Let's consider one commattata structure the pair. To begin, let's assume that we want a pair of
floating-point values. These might be used to represent @ic@te in two dimensions, a latitude
and longitude, or perhaps even a pair of corresponding @dti@s from a science experiment such
as an object’s volume at a given temperature.

CSC 523 Advanced Programming Summer 2014

Without knowing the reason someone might want to use ourgb@oubl e values, we can write
a class that encapsulates them:

See Example: DoublePair

Notice that we have only very general-purpose code here.a/ithilight make sense, for example,
to add up the two numbers in the pair in some cases, we donthadltb our general purpose class.

Before we move on, we notice a couple of other items of interest

e We provide a methoeéqual s that returns whether thBoubl ePai r is the same as an-
otherDoubl ePai r . equal s is another of those methods (lik®St ri ng) that are pro-
vided by Java for any object type. But likeoSt r i ng, we normally will want to provide
our ownequal s method that determines the equality or equivalence of tweatd® of
the class we are defining in some meaningful way. Here, weaefijnal s so that two
Doubl ePai r objects are equal only if each of the numbers this one cantai@ equal to
the corresponding numbers in the other.

Note also that the method signature of #gual s method includes a formal parameter of
type Qbj ect , even though we know that for this to make any sense, it shioelldassed
as an object of typ®oubl ePai r . It is necessary to define it witlbj ect , however, as
equal s methods must have this same method signature for all cl&ssesiform to Java’s
rules.

The main complication of this fact is that we need to tell Jined we expect thi€bj ect to
be aDoubl ePai r, so we can make the meaningful comparison. The first lineebtdy
of ourequal s method is acast which tells Java that the object we passed i ahould
subsequently be treated aBa@ubl ePai r calledot her . The main drawback of this is that
if we pass in some other type of object, the program will cnablen the cast is attempted,
with aCl assCast Except i on. Uncomment the last line of the provide®i n method
to see this happen.

e We provide arai n method that tests our class. This method would not be usedisea’
of this class — it is provided only as a convenient way to tesidass. It would work exactly
the same way if we placed timai n into a separate class.

Making it More General Purpose

While it’s nice to have a pair ofloubl e values, what if we need a pair oht s, orSt ri ngs,
or Pur chasedl t ens? Or maybe a pair where the “first” isSt ri ng and the “second” is a
doubl e?

Java’'sQbj ect class, which we just saw as a parameter tostheal s method, provides a mech-
anism we can use for this.

See Example: ObjectPair

The code is nearly identical, except now our “first” and “setocan be any object type we wish.

CSC 523 Advanced Programming Summer 2014

In themai n method, we actually pass primitive types as well, but thaeigsg facilitated by Java’s
autoboxingfunctionality, supported by Java versions 1.5 and up.

Since primitive types, like nt , doubl e, andbool ean are not objects, they do no qualify as a
valid item to be stored in a@bj ect variable. But, since we often do want to treat such values
as objects, Java provides a set of classes, includmgger , Doubl e, andBool ean, that are
objects whose sole purpose is to include omé¢ , doubl e, or bool ean, respectively. In old
Java versions, we would have had to create such objectciexgé.g, “new Doubl e(9. 1) ")

but the Java compiler will now insert code to do this for usenadtically.

Making it Generic

Another relatively new feature of Java, also introducedawaJl.5, is to allow class definitions
to includegeneric or parameterized data typesThis means that we can write a definition of
the structure using data types that are unspecified (muelthi value of a method parameter is
unspecified) until we create an instance of the class. But aectbind” to a type, we have to
stick with that type (unlike how ou@bj ect Pai r 's “first” was initially a St r i ng and later a
Doubl e).

Here is the generic version of our pair class:
See Example: GenericPair

The important feature here is the usetyjfe parameterso specify the actual data types we want
to use for the first and second entries of our pair. These a@fsl throughout in this example as
UandV. We assume (and in fact, require) that all places we refér tost are of typeU and of
second of typeV. This includes declarations of instance variables, foppaahmeters, and return

types.

Only when we construct an actuaner i cPai r object do we specify the types we wish to use.
See in the providedai n method how this is done.

Associations
Let's consider a very simple example of a data structuredahAssoci at i on.

As the name suggests, Associ at i on is a way to associate pairs of objects, one of which is
thekey and one of which is theal ue. Unlike the “pair” structures we just considered, once
created, the key of aAssoci at i on cannot be changed, only the value can.

This is another “general purpose” structure, but one wighabove restriction.

When developing any such structure, there are some questitvesanswered first.

e What should such a structure look like?
o What instance variables will it need?

e What constructors should be provided?

5

CSC 523 Advanced Programming Summer 2014

¢ What methods will it need?

As we have seen, we have two main options when developingexigatass. We can develop our
structures to hold references@)j ect s and then use them to store instances of any Java class, or
use type parameters.

Before we make use of these structure soon, let’s take a loible atnplementation of each that is
provided with the supplemental Bailey text's “structure kesge”.

Thebj ect -based implementation:

See Structure Source:
structure/ Associ ation. java

The generic implementation:

See Structure Sour ce:
structureb/ Associ ati on.java

This class is defined as part paickage struct ure, meaning it can accegy ot ect ed
entries of other classes in the structure, and those classeaccess| ass Associ ati on’s
pr ot ect ed items.

The actual implementation of th&ssoci ati on class is pretty straightforward. A couple of
quick notes:

e We require &key to construct a newAssoci at i on, but theval ue is optional. If not
provided, theval ue part defaults tawul | .

e Two Associ at i ons are considered equal (by tequal s method) if theirkeys are the
same, regardless of theial ues.

e We have an accessor for tkey (get Key) but no mutator. Once created, tkey of an
Associ at i on may not be modified.

e Fortheval ue, we have both an accessgef Val ue) and a mutatorget Val ue).

We will see examples that use thssoci at i on class soon.

