
Computer Science 523
Advanced Programming
The College of Saint Rose
Summer 2014

Topic Notes: Classes

So far, our example programs have operated on data (i.e., variables and parameters) that we can
categorize in just two ways:

• primitive types, such asint, double, char

• object types, such asString, Scanner, Random, DecimalFormat

We next focus on these object types a bit more. In particular,we will introduce our own object
types into our programs.

Objects and Classes
Every object in a Java program is an entity that can contain both fields– which are like the variables
we’ve been using in our programs, andmethods, which operate on the data in those fields.

The idea of an object is central to theobject-oriented programmingparadigm, which has been very
popular since being introduced a few decades ago.

The idea is that we write program components, calledclasses, which represent templates for the
objectswe wish to represent in our program. For each object, we include fields that are used to
represent the state of the object and methods that allow thatstate to be queried or modified.

The text includes an example of an alarm clock. They came up with a list of fields that can be used
to describe the state of an alarm clock. It is similar to this list:

• the current hour (0-23)

• the current minute (0-59)

• the current second (0-59)

• the alarm hour (0-23)

• the alarm minute (0-59)

• the alarm status (on or off)

And some methods that can be used to modify the state of the alarm clock:

CSC 523 Advanced Programming Summer 2014

• set current time

• set alarm time

• disable alarm

• enable alarm

• stop currently sounding alarm

We might also consider some methods to query the current state of the alarm:

• get current time

• get alarm time

• get alarm status (on or off)

And then the alarm clock might have some other things it does “on its own” – its state changes as
the time proceeds:

• increment time by 1 second

• start sounding alarm

In Java, the functionality of an object is described in aclass. We have been writing classes all
semester as containers for ourmain, and recently, a few other methods. It turns out that this is just
a small fraction of what a Java class can be used to do.

We look at a mechanism to achieve this by a simpler example. Consider this example, which we
could have written much earlier in the semester:

See Example: RatiosNoClass

This program maintains information about ratios of integervalues. We create two ratios, each rep-
resented by 2int variables, and print them, modify them, and compute their decimal equivalents.

But with a class that represents aRatio object, we canencapsulatethe numbers (the numerator
and denominator) into fields, and provide methods to construct (theconstructor(s)), access (the
accessor methods), and modify (themutator methods) the fields.

See

See Example: Ratios

and the extensive comments within for details.

Object Orientation

2

CSC 523 Advanced Programming Summer 2014

The key to successful object-oriented programming is to identify and design the objects in the
problem. Looking first at the ratios example, it is essentialto notice that theRatio class defines
the data and operations related to a single ratio. It does notknow or care how or why the ratios are
being used. It simply defines a ratio and methods that operateon one. It is up to other code – in
this case themain method in theRatios class – to determine when and whyRatio objects are
instantiated and how they are used.

The text shows a popular metaphor for a class definition: the cookie cutter. I like another: a file
cabinet of forms and instructions. Think of the class as a master copy of a form that contains
information about an object, how to create one, and instructions for how the object works. Each
time we need a new instance of the object, we make a copy of thatform and use it to keep track of
the details of that object.

As a further example, let’s consider a program intended to keep track of a series of items purchased
in a store. Each item has a name, a unit price, and a quantity purchased by a customer. Our program
will read in a series of these items and track the most expensive, least expensive, the largest quantity
purchased, and the largest total cost (unit price times quantity). For simplicity, we will break any
ties by the first encountered. So if the most expensive item cost $9.50 but there are two different
items each priced at $9.50, we will keep the first and ignore the second.

We will make use of a class that represents one of these items.We will then be able to create an
instance of this class for each such item. We can add accessormethods to retrieve the information
we need to implement our program.

See Example: PurchaseTracker

One additional item here is the use of aclass variablein the PurchasedItem class. The
DecimalFormat object we declare and construct with thestatic qualifier is shared among
all instances of the class, no matter how many we create.

General Purpose Classes
The few custom classes we have seen so far have been developedfor very specific situations. The
Ratio class stores a ratio, but isn’t useful for much else. ThePurchasedItem class in the
purchase tracker example contains aString, adouble, and anint, all used for very specific
purposes.

Part of a good object-oriented design is to find places where we can write some software (in our
case, a Java class) that might be useful in situations beyondthe one at hand. It turns out there are
many simple and no-so-simple structures that arise in many contexts, and rather than developing a
new Java class each time we need one, we strive to re-use ones that already exist. Or if one does
not exist, develop one that will satisfy needs of future programmers as well.

Let’s consider one commondata structure: thepair. To begin, let’s assume that we want a pair of
floating-point values. These might be used to represent a coordinate in two dimensions, a latitude
and longitude, or perhaps even a pair of corresponding data values from a science experiment such
as an object’s volume at a given temperature.

3

CSC 523 Advanced Programming Summer 2014

Without knowing the reason someone might want to use our pairof double values, we can write
a class that encapsulates them:

See Example: DoublePair

Notice that we have only very general-purpose code here. While it might make sense, for example,
to add up the two numbers in the pair in some cases, we don’t addthat to our general purpose class.

Before we move on, we notice a couple of other items of interest.

• We provide a methodequals that returns whether thisDoublePair is the same as an-
otherDoublePair. equals is another of those methods (liketoString) that are pro-
vided by Java for any object type. But liketoString, we normally will want to provide
our ownequals method that determines the equality or equivalence of two objects of
the class we are defining in some meaningful way. Here, we define equals so that two
DoublePair objects are equal only if each of the numbers this one contains are equal to
the corresponding numbers in the other.

Note also that the method signature of theequals method includes a formal parameter of
typeObject, even though we know that for this to make any sense, it shouldbe passed
as an object of typeDoublePair. It is necessary to define it withObject, however, as
equals methods must have this same method signature for all classesto conform to Java’s
rules.

The main complication of this fact is that we need to tell Javathat we expect thisObject to
be aDoublePair, so we can make the meaningful comparison. The first line of the body
of ourequals method is acast, which tells Java that the object we passed in aso should
subsequently be treated as aDoublePair calledother. The main drawback of this is that
if we pass in some other type of object, the program will crashwhen the cast is attempted,
with a ClassCastException. Uncomment the last line of the providedmain method
to see this happen.

• We provide amain method that tests our class. This method would not be used by a“user”
of this class – it is provided only as a convenient way to test the class. It would work exactly
the same way if we placed themain into a separate class.

Making it More General Purpose

While it’s nice to have a pair ofdouble values, what if we need a pair ofints, orStrings,
or PurchasedItems? Or maybe a pair where the “first” is aString and the “second” is a
double?

Java’sObject class, which we just saw as a parameter to theequals method, provides a mech-
anism we can use for this.

See Example: ObjectPair

The code is nearly identical, except now our “first” and “second” can be any object type we wish.

4

CSC 523 Advanced Programming Summer 2014

In themain method, we actually pass primitive types as well, but that isbeing facilitated by Java’s
autoboxingfunctionality, supported by Java versions 1.5 and up.

Since primitive types, likeint, double, andboolean are not objects, they do no qualify as a
valid item to be stored in anObject variable. But, since we often do want to treat such values
as objects, Java provides a set of classes, includingInteger, Double, andBoolean, that are
objects whose sole purpose is to include oneint, double, or boolean, respectively. In old
Java versions, we would have had to create such objects explicity (e.g., “new Double(9.1)”)
but the Java compiler will now insert code to do this for us automatically.

Making it Generic

Another relatively new feature of Java, also introduced in Java 1.5, is to allow class definitions
to includegeneric, or parameterized data types. This means that we can write a definition of
the structure using data types that are unspecified (much like the value of a method parameter is
unspecified) until we create an instance of the class. But oncewe “bind” to a type, we have to
stick with that type (unlike how ourObjectPair’s “first” was initially a String and later a
Double).

Here is the generic version of our pair class:

See Example: GenericPair

The important feature here is the use oftype parametersto specify the actual data types we want
to use for the first and second entries of our pair. These are specified throughout in this example as
U andV. We assume (and in fact, require) that all places we refer tofirst are of typeU and of
second of typeV. This includes declarations of instance variables, formalparameters, and return
types.

Only when we construct an actualGenericPair object do we specify the types we wish to use.
See in the providedmain method how this is done.

Associations
Let’s consider a very simple example of a data structure called anAssociation.

As the name suggests, anAssociation is a way to associate pairs of objects, one of which is
thekey and one of which is thevalue. Unlike the “pair” structures we just considered, once
created, the key of anAssociation cannot be changed, only the value can.

This is another “general purpose” structure, but one with the above restriction.

When developing any such structure, there are some questionsto be answered first.

• What should such a structure look like?

• What instance variables will it need?

• What constructors should be provided?

5

CSC 523 Advanced Programming Summer 2014

• What methods will it need?

As we have seen, we have two main options when developing a generic class. We can develop our
structures to hold references toObjects and then use them to store instances of any Java class, or
use type parameters.

Before we make use of these structure soon, let’s take a look atthe implementation of each that is
provided with the supplemental Bailey text’s “structure package”.

TheObject-based implementation:

See Structure Source:
structure/Association.java

The generic implementation:

See Structure Source:
structure5/Association.java

This class is defined as part ofpackage structure, meaning it can accessprotected
entries of other classes in the structure, and those classescan accessclass Association’s
protected items.

The actual implementation of theAssociation class is pretty straightforward. A couple of
quick notes:

• We require akey to construct a newAssociation, but thevalue is optional. If not
provided, thevalue part defaults tonull.

• Two Associations are considered equal (by theequals method) if theirkeys are the
same, regardless of theirvalues.

• We have an accessor for thekey (getKey) but no mutator. Once created, thekey of an
Association may not be modified.

• For thevalue, we have both an accessor (getValue) and a mutator (setValue).

We will see examples that use theAssociation class soon.

6

