
Computer Science 507
Software Engineering
The College of Saint Rose
Spring 2015

Lab 1: Unix Introduction/Refresher and Other Setup
Due: 6:00 PM, Monday, January 26, 2015

In this first lab, we will set up some accounts and get you used to using them. This includes a
chance to learn or refresh your knowledge of some basic Unix commands, and to write and run
some simple C and Java programs in a Unix environment.

You may work alone or in groups of size 2 or 3 on this lab. Only one submission per group is
needed.

You may ask your instructor and classmates for help as you complete this lab, but the work you
submit must ultimately be your own (or that of your group). Ifyou are completely unfamiliar
with Unix, don’t hesitate to ask questions! On the other hand, if you have some experience, don’t
hesitate to help a classmate! None of these tasks is intendedto be hard, but if you don’t have much
Unix experience (and it is reasonable if you don’t), they could be.

Getting Set Up

Create a document where you will record your answers to the lecture assignment and lab questions.
If you use plain text, call it “lab1.txt ”. If it’s a Word document, you can call it whatever you’d
like, but when you submit, be sure you convert it to a PDF document “lab1.pdf ” before you
submit it.

Also, read over the description of the types of items you willencounter in our labs on the course
home page.

Lecture Assignment Questions

We will usually discuss these questions at the start of classon the lab due date, so no credit can be
earned for late submissions of lecture assignment questions.

Before attempting these problems, please complete the reading assignment listed on this week’s
lecture page.

LA Question 1:
Sommerville Exercise 1.1, p. 25. (2 points)

LA Question 2:
Sommerville Exercise 1.2, p. 25. Also give examples of a generic software product and a
custom software product. (2 points)



CSC 507 Software Engineering Spring 2015

LA Question 3:
Sommerville Exercise 1.7, p. 25. (2 points)

LA Question 4:
Sommerville Exercise 2.1, p. 54. (2 points)

LA Question 5:
Sommerville Exercise 2.2, p. 54. (2 points)

LA Question 6:
Sommerville Exercise 2.7, p. 55. (2 points)

LA Question 7:
Sommerville Exercise 3.2, p. 78. (2 points)

LA Question 8:
Sommerville Exercise 3.3, p. 78. (2 points)

LA Question 9:
Sommerville Exercise 3.6, p. 79. (2 points)

LA Question 10:
Sommerville Exercise 4.2, p. 116. (2 points)

LA Question 11:
Sommerville Exercise 4.7, p. 116. (4 points)

LA Question 12:
The Brooks paper was written over 25 years ago. Discuss which parts of the article you
believe are still relevant today, and what in the article hasbeen shown not to be true over the
years. Include your thoughts on each of the items listed in the “Hopes for the Silver” section.
(6 points)

SubmissionBox Account

We will use a system called SubmissionBox, developed by previous students of this course, for
most assignment submissions this semester. If you have not had a class with me before that used
SubmissionBox, you will need to have an account set up for you.Even if you have, you will need to
be added as a student to this course. Please come to the teaching station to get your SubmissionBox

2



CSC 507 Software Engineering Spring 2015

account set up.

Once your SubmissionBox account has been set up (or updated toinclude you as a student in
this course, if you already had an account), create a document with a brief description of your
background. Include the same information as in the “studentintroductions and backgrounds” item
from class. Then log into SubmissionBox, and submit this document under assignment “SBTest”.
Verify that you received an email confirmation for this submission. You will earn 1 point for
making this submission.

Blogging Site Account

We will be using a Wordpress blog site to discuss the speakerswho will be presenting to the class
throughout the semester. Please visit http://www.strosecs.com/cs507s15speakers/ and register for
an account that you can use to comment on our speakers. For now, complete the registration process
and add a comment on the post “This site will contain...” to make sure everything is working.

Unix Account

We will be using a virtual Linux server calledmogul.strose.edu at times during the semester
(and definitely today). If you already have an account on mogul, please make sure you can still log
in. If you don’t (or aren’t sure), please come to the teachingstation to have an account created for
you.

Log into mogul.strose.edu . From PuTTY or similar Windows secure shell clients, just fill
in the information on the connection dialog usingmogul.strose.edu for the host name and
your username for the username.

If using ssh from a Terminal window on the Mac, and your username onmogul.strose.edu
is jcool , you would issue the command

ssh mogul.strose.edu -l jcool

at the terminal prompt. Log in with yourmogul.strose.edu password. You should be pre-
sented with a prompt that looks something like:

[jcool@mogul ˜]$

and mogul is now ready to accept your commands. More on those below.

Unix Practice

GUIs are nice, but they can be slow to navigate and too restrictive for some purposes. You can often
work much more efficiently by working in a Unix environment and interacting with the system by
typing commands at the Unixshell, or command line. When you log in, you will be presented with
a prompt. This is your direct interface to issue commands to the operating system. When you type

3



CSC 507 Software Engineering Spring 2015

a command here, the shell will execute the command on your behalf, print out any results, then
reissue the prompt.

Of course, the command line is useless if you don’t know what commands it understands. You will
learn about several important commands in this lab, but we will only scratch the surface. One of
the most important isman– the Unix manual. Every Unix command has a manual page, including
man. To see the manual page aboutman, type the command:

man man

You will be presented with a manual entry about the Unix manual, one page at a time. You can
advance to the next page by pressing the space bar, and can quit out of man to return to your
command prompt by typing ’q’.

The Emacs Editor

Emacs (emacs from the Unix command line) is a powerful text editor, which is very good for
programming in a language like C and for general plain-text editing. You will need to become
familiar with it.

To try it out, you will use it to create yourlab1unix.txt file that will contain your answers to
this week’s lab questions. For now, you are to create this filein your home directory on mogul.

You already should have one session connected to mogul from above. Now open a second PuTTY
or Terminal window and log intomogul.strose.edu on that one as well.

In one of the windows, launchemacs on the filelab1unix.txt .

emacs lab1unix.txt

Emacs should start up, and present you with a text-based menuacross the top (which we will
purposely ignore), a large area where you can edit the file, and two lines of status information
across the bottom.

Type your name(s) and “Lab 1 Questions” in the Emacs window that is editing the filelab1-
unix.txt .

In the other window, launch anotheremacs session where you can type some text and then identify
the function of and experiment with the Emacs commands below. Note thatC- before a key means
hold downCtrl and hit that key.M- indicates the “Meta” key, which on most systems isEsc . To
issue a Meta command, hit theEsc key, release it, then hit the key(s) for the command you wish
to issue. Use the keystrokes rather than the menus. It will save you time in the long run! Note: for
some of these commands, a very small buffer (that is, the contents of the file you are editing) will
not allow you to see what they do. So create a file with several screens full of text before you go
too far.

C-x C-s C-x C-c C-x C-f C-x C-w C-g C-a C-e
C-d C-_ C-v M-v C-s C-r M-%
C-k C-y C-x u

4



CSC 507 Software Engineering Spring 2015

Question 1:
Complete your Emacs command descriptions inlab1unix.txt (4 points).

Directory Structure

It is always important, but especially so when working with the Unix command line, to know
where the files in various directories (often called “folders” on Macintosh and Windows systems
because of how they are visually represented in GUIs) you might be using are actually stored, and
where and how those are accessible. More and more computer users are getting into the habit of
placing all files in a “My Documents” folder or in cloud storage where a search can be used to find
files. But we’re computer scientists and we can do better. We will keep our files in an appropriate
directory hierarchy. And we need to be aware where the files “live” – are they on the remote server,
in the cloud, or on our own hard drive or flash drive?

On mogul.strose.edu , we find a standard Unix style environment. Each user has ahome
directorywhere only that user has permission to read and write files. Your home directory is the
initial current directoryor working directorywhen you first log in.

The working directory is where a program will look for files unless instructed to do otherwise.
You’ll hear Unix users asking a question like “What directoryare you in?” and the answer to this
is your working directory.

The commandpwd will instruct the shell to print your working directory.

Question 2:
What is your home directory onmogul.strose.edu ? (hint: usepwd) (1

2
point)

Note: the lab questions for this week are worth 1 point each unless otherwise specified.

You can also list the contents of your working directory withthe commandls .

Question 3:
What output do you see when you issue thels command onmogul.strose.edu ? (1

2

point)

Other important operations to navigate and modify the directory structure are changing your work-
ing directory (cd ), creating a new directory (mkdir ), and removing a directory (rmdir ).

Create a directory in your account for your work for this course (cs507 might be a good name),
and a directory within that directory for this assignment (lab1 might be a good name).Note: if
working in a group, all group members should complete these steps, but only one person’s
information needs to be included in your lab question submissions.

Question 4:
Change your working directory to the one you just created and issue thepwd command.
What does this show as your working directory?

5



CSC 507 Software Engineering Spring 2015

In your shell window and in your home directory (note: you canalways reset your working di-
rectory to be your home directory by issuing the commandcd with no parameters), issue this
command:

uname -a > linux.txt

This will execute the commanduname -a , which prints a variety of information about the system
you are on, and “redirects” the output, which would normallybe printed in your terminal window,
to the filelinux.txt .

Output Capture:
linux.txt for 1 point(s)

Look at the contents of the filelinux.txt with the command:

cat linux.txt

Question 5:
What do you think the information inlinux.txt means?

Unix Commands

Identify the function of and experiment with these Unix commands (a few of which you have
already used):

ls cd cp mv rm mkdir pwd
man chmod cat more grep head tail
ln find rmdir wc diff scp touch

Question 6:
Give a one sentence description of each command. (4 points)

Using appropriate commands from the above list, move thelinux.txt file you created in your
home directory into the directory you created on mogul for your work for this assignment.

Show that this has worked by issuing the following command from inside of your course directory
(but not inside the directory for this assignment):

ls -laR > ls.out

Then move the filels.out into the directory for this assignment.

6



CSC 507 Software Engineering Spring 2015

Output Capture:
ls.out for 2 point(s)

Using the Unix manual, your favorite search engine, or in discussion with your classmates, deter-
mine the answers to these questions:

Question 7:
How do you change your working directory to be “one level up” from the current working
directory? (Give the command.)

Question 8:
Give two or three different ways to change your working directory to be your home directory.
All likely involve the cd command, but will take different parameters.

Compiling and Running a Java Program in Unix

Our assumption in this course is that you are an expert programmer in some programming lan-
guage, most likely Java. Even so, much of your experience as aJava programmer is likely from
within an Integrated Development Environment (IDE). Here,we will see how to compile and run
a Java application from the Unix command line.

See Example:
/home/cs507/examples/hello

For you to run this, you will want to copy the example to your own directory. Create a directory
calledhello under your directory for this lab and copy the C and Java files from the example into
that directory.

Change to that directory and compile and run it:

javac Hello.java
java Hello

Now, edit the Java program so it prints out a second message, recompile and re-run, but this time
redirecting your output to a filejava.out .

Output Capture:
java.out for 1 point(s)

When we run a Java program from the Unix command line, any additional parameters we place
after the program name when we launch the program are delivered to the program in theargs
array that is passed to themain method.

Finally, modify the Java program so it prints out a third message which assumes the first parameter
passed is the name of the person running the program. So running

7



CSC 507 Software Engineering Spring 2015

java Hello Joe

would output an additional line:

Thanks for running, Joe!

Redirect the output of this new program tojava2.out when you put your own name in as the
first command-line parameter.

Output Capture:
java2.out for 1 point(s)

Compiling and Running a C Program in Unix

C is a widely-used, general purpose language, well-suited to low-level systems programming and
scientific computation. We will not study it in detail in thiscourse, but it is worth a bit of our time
to see how to develop, compile, and run a simple C program in a Unix environment.

We will initially study it assuming you have Java experience, focusing on the features that make
C significantly different from Java. Fortunately, Java borrowed much of its syntax from C, so it is
not difficult for a Java programmer to read most C programs.

C++ is a superset of C (that is, any valid C program is also a valid C++ program, just one that
doesn’t take advantage of the additional features of C++). C++adds object-oriented feautures. In
this course, we will look only at C, not C++.

A Very Simple C Program

We will begin by seeing how to compile and run a very simple C program (hello.c ) in a Unix
environment.

As part of the previous task, you copied a C program calledhello.c into a directory in your
account. Change to that directory and compile and run it:

gcc hello.c
./a.out

Things to note from this simple example:

• We run a program namedgcc , which is a free C compiler.

• gcc , in its simplest form, can be used to compile a C program in a single file:

gcc hello.c

8



CSC 507 Software Engineering Spring 2015

In this case, we’re askinggcc to compile a C program found in the filehello.c .

Since we didn’t specify what to call the executable program produced, gcc produces a file
a.out . The name isa.out for historical reasons.

• When we want to run a program located in our current directory in a Unix shell, we type its
name.

– For example, when we wanted to rungcc , we typed its name, and the Unix shell found
a program on the system in a file namedgcc .

– How does it know where to find it? The shell searches for programs in a sequence of
directories known as thesearch path. Try: env .

– So if we want to runa.out , we should be able to type its name. But our current
directory, always referred to in a Unix shell by “. ”, is not in the search path. We need
to specify the “. ” as part of the command to run:

./a.out

• Of course, we probably don’t want to compile up a bunch of programs all nameda.out , so
we usually askgcc to put its output in a file named as one of the parameters togcc :

gcc -o hello hello.c

Here, the executable file produced is calledhello .

• And in the program itself, let’s make sure we understand everything:

– At the top of the file, we have a big comment describing what theprogram does, who
wrote it, and when. Your programs should have something similar in each C file.

– We are going to use a C library function calledprintf to print a message to the
screen. Before we can use this function, we need to tell the C compiler about it. For
C library functions, the needed information is provided inheader files, which usually
end in.h . In this case, we need to includestdio.h . Why? Seeman 3 printf .

– A C program starts its execution by calling the functionmain . Any command-line
parameters are provided tomain through the first two arguments to main, traditionally
declared asargc , the number of command-line parameters (including the nameof
the program itself), andargv , an array of pointers to character strings, each of which
represents one of the command-line parameters. In this case, we don’t use them, but
there they are.

– Our call toprintf results in the string passed as a parameter to be printed to the
screen. The\n results in a new line.

– Our main function returns anint value. A value of 0 returned frommain generally
indicates a successful execution, while a non-zero return indicates an error condition.
So we return a 0.

9



CSC 507 Software Engineering Spring 2015

• Notes for Java programmers:

– Good news: much of the syntax of Java was borrowed from C, so a lot of things will
look familiar.

– There are no classes and methods, justfunctions, which can be called at any time. Any
information a function needs to do its job must be provided byits parameters or exist in
global variables– variable declared outside of every function and which are accessible
from all functions.

Now, edit the C program so it prints out a second message, recompile and re-run, but this time
redirecting your output to a filec.out .

Output Capture:
c.out for 1 point(s)

Practice Programs

Write your own Java and C programs namedSeq.java andseq.c that clone some of the func-
tionality of the Unixseq command. See the man page forseq(1) for details, but the program
should take 1, 2, or 3 numeric parameters. To simplify, you may ignore all other command line
options, and that all given parameters are valid integers.

Note that the command-line parameters in each case will cometo you as strings, and will need to be
converted to integers before they can be used. In each language there are multiple mechanisms that
will allow you to do the conversion. One possibility in Java is to use theInteger.parseInt
method, and in C to use thestrtol function from the C standard library.

If your programs are presented with invalid command line parameters (e.g., there aren’t the right
number of parameters, the parameters cannot be converted tointegers, or they otherwise make no
sense), your program should print an appropriate error message and exit.

Make sure your programs compile and run on mogul usinggcc for the C program, andjavac
for Java.

Each program is worth 15 points.

Submitting

Before 6:00 PM, Monday, January 26, 2015, submit your lab for grading. Package up all required
files into an appropriate archive format (.tar.gz , .zip , and.7z are acceptable) and upload a
copy of the using Submission Box athttp://sb.teresco.org under assignment “Lab1”.

Note that you will need to transfer the files you created onmogul.strose.edu to the computer
from which you will be making your submission, so they can be included in your archive. Win-
dows users might want to consider “WinSCP” or “FileZilla”, Mac users can use the builtinscp
command at the Terminal, or use “FileZilla”. There are many other options in both cases.

10



CSC 507 Software Engineering Spring 2015

Grading

This assignment is worth 80 points, which are distributed asfollows:

Feature Value Score

Lecture Assignment Questions 30
“SBTest” submission in SubmissionBox 1
Lab Question 1 (Emacs commands) 4
Lab Question 2 (home directory) 1

2

Lab Question 3 (ls ) 1

2

Lab Question 4 (pwd in new dir) 1
Output Capturelinux.txt 1
Lab Question 5 (linux.txt contents) 1
Lab Question 6 (Unix commands) 4
Output Capturels.out 2
Lab Question 7 (cd up) 1
Lab Question 8 (cd to home) 1
Output Capturejava.out 1
Output Capturejava2.out 1
Output Capturec.out 1
Seq.java Practice Program 15
seq.c Practice Program 15

Total 80

11


