Computer Science 507

Software Engineering
The College of Saint Rose
Spring 2013

Topic Notes: Dangers of Concurrency

As programmers here in the multicore era, understandinguroency is essential. While it is not
a major focus of this course, it seems appropriate to haveaat b brief discussion of the issues.

Any single program that is going to make use of multiple pssaay cores at the same time will
need to consist of multiplprocesses or threads of control. These threads are often introduced and
managed by the programmer, though compilers can help in sases.

Any modern programming language is likely to include suppar multithreading, either at the
language level or through libraries.

Multicore Programming

Multithreaded programs are well suited to take advantagheomultiple processing cores found
in most modern computers. But writing a program to do so ctyraad efficiently is challenging.

The following are some challenges that must be overcome:

¢ Dividing activities — the program needs to be broken down s#parate tasks that can be
run concurrently.

e Load balance — the tasks need to perform similar amounts i gince the entire program
would run only as quickly as the slowest (most heavily logdask.

e Data partitioning — the data needed by each task should beiatsd with that task.

e Data dependency — if the execution of one task depends ok cesnputed by a second,
synchronization must be performed to make sure the resuit the second task is available
before the first attempts to use it.

e Testing and debugging — execution of multithreaded progranludes tasks that execute
concurrently or in different interleavings. It is very ddfilt to ensure that a program works
correctly for all possible interleavings.

These issues will be discussed extensively in the ParalteHigh Performance Computing course
next fall (take it!).

For today, we will just look at some examples in Java.

In my introductory Java programming classes, | like to idtroe “active objects” — objects which
behave independently of user actions. These are classesthand the Act i veCbj ect class

CSC 507 Software Engineering Spring 2013

in a teaching library called “ObjectDraw”, which encompasgvhat are usually termed threads of
control.

Java includes a class namé&ldr ead. Rather than presenting my introductory students (or you)
with “raw” Java threads,| will use thi&ct i veCbj ect class.

Our goal here is mainly to discuss complications that arigle threads and provide some indica-
tions of how to handle them.

| nterference

An Act i veQbj ect or thread activates an extra “brain” for your program. Whaid®ans if those
brains give your program contradictory messages?

An important class of problems can arise with concurrencgmwthere are several threads that
might try to update the same variable at the same time.

Consider an example of a bank with two ATMs which can be useépwosit and withdraw money.
See Example: ATM1

One of the ATMs will repeatedly withdraw $100 from the accowhile the other will repeatedly
deposit $100 in the account (see the difference in param#téhe constructors for the ATM’s).
When the user pushes the button, #wot i onPer f or ned method repeats the construction and
execution of the ATM objects.

The main items of interest here are thet Bal ance andset Bal ance methods. They do the
obvious things.

Ther un method repeatedly deduathange from the account by first executirsdar edBank. get Bal ance(
to get the balance and then executsiitar edBank. set Bal ance(bal ance+change, ATMI D, change)
to update the balance.

The final balance in the account should be $1000, the samerdstanted with, as one of the ATM
objects withdraws $100 ten times, while the other depodi®%en times. If you run this code
enough, however, you will discover that the answer does Imatys turn out to be $1000! What
is causing the problems? Look at the program to see if you etermine what is going wrong
before reading further.

The error occurs because two different threads (objecigefAct i veQbj ect) are updating the
same variablehal ance. Each gets the balance from the bank, adds in its changehandélls
the bank the new balance. However, it can happen that bothsAJé¥lthe balance before either of
them has the opportunity to update the balance.

For example, suppose ATM1 gets the balance of $1000, whiZATsimultaneously” gets the
balance of $1000 (they aren’t actually happening simuttasly if there is only one processor,
but for our purposes it can be helpful to think that way). NoWM{ adds $100 to the balance
and updates the balance to $1100. ATM2 then removes $100tfrerhalance that it originally
got ($1000) and updates the balance to $900. Thus if thdeaténg of operations of ATM1 and
ATM2 are such that both get balances before either regitensew balance, the final balance will

2

CSC 507 Software Engineering Spring 2013

not reflect one of the two operations.

Clearly this is a problem, yet we would like to have the operatiof the two ATMs interleaved.
(We could just run ATM1 to conclusion before starting up ATNbAt this does not model the usage
of ATM’s properly.)

We would like to ensure that if ATM1 queries the balance with intent to change it and set a
new balance, that ATM2 does not read the original balances. ihen both read the old balance
and both update that one of the transactions is lost. We pttenremedy this by replacing the
set Bal ance method with achangeBal ance method:

See Example: ATM2

Now rather than having separate methods to get and set @nedealve have a single method which

takes the amount of change and updates the balance. Becaygtthg and setting are no longer

separated by distinct method calls, the chances of intaréer are not as great. However there is
still the opportunity of interference between the caldolabf the new balance and the update of
the value. We have artificially increased the chances obthedding thepause between the two.

Even if we remove that, we reduce the time between the cdicalef the old balance and setting
of the new balance, but still allows the (at least theorétjwassibility of interference between the
calculation obal ance+change and the assignment of that valuda@l ance. To be absolutely
safe, we must ensure that only one thread at a time can extreuteethodchangeBal ance.
We can do this in Java by using the keywargnchr oni zed.

If we attach the keywordynchr oni zed to methods in a class, then Java will ensure that only
one thread at a time will be executing any of those methods. ekample we can label both
get Bal ance andchangeBal ance assynchr oni zed.

See Example: ATM3

Now if a thread associated with one ATM object is executirigeziof these methods, then no other
thread can execute either of the methods. For examphd,ML is executingchangeBal ance,
thenATM2 will not be allowed to execute eithehangeBal ance or get Bal ance. Instead it
will wait until ATML has finished executing that method and then execute thedesethod. (The
operating system is given the responsibility of scheduliregthreads’ access to the processor.)

A thread executing eitherhangeBal ance or get Bal ance has no impact on another thread’s
attempts at executing any of the non-synchronized methidtie program. Thus the user-interface
thread can by executing tlaet i onPer f or med or st ar t ATMs method whileATML is execut-
ing changeBal ance.

Because of the use sfynchr oni zed, neither thread can interfere with the other, ensuring that
the final answer is the correct one. However, there is onaldisdage of using synchronized
methods — they cut down on the amount of concurrency in thiesysThis may slow down the
execution of the program, as one thread may be waiting fopanation to complete (e.g., a write
to the screen or a read from a file), while another might beyr¢adio something. The second
thread may be ready to use the processor, but if it is readydoute a synchronized method and
the other thread is executing a synchronized method of the sibject, then it may be blocked
from executing.

CSC 507 Software Engineering Spring 2013

This example may seem a bit contrived — we carefully madetierpause times for the two ATMs
were the same and added a random pause inside the methodeahge the balance to increase
the chances of interference. However, the interferenci&ldmppen in each of our cases (except
the one with thesynchr oni zed modifiers) even without the careful attempts to increase the
chances. Has anyone ever had some big program, even maybeveecdal program, crash in an
unexpected and non-reproducable manner? Perhaps a brawesern Windows itself? There’s

a pretty good chance that a lot of those kinds of crashes areeult of concurrency not being
dealt with carefully enough. Most of the time, things are finleut once in a while just the right
combination of things is happening and there you go. Craslpand

There are many other complications involved in the use ofamency — too many to go into detalil
here. Concurrency can be quite challenging, and inattettidetails may result in programs that
don’t work as expected. Most of the programs that we have lbadwyrite which involve active
objects have been designed so that no interference is p@s$ie urge you to worry about the
possibilities of this happening when you use active obje&sre advanced Computer Science
courses study concurrency in much more detail, includitgroproblems that may arise and the
techniques to deal with them.

Cooper ating Processes
An Independent process is not affected by other running processes.
Cooperating processes may affect each other, hopefully in some controlled andulsedy.

Why cooperating processes?

¢ information sharing

e computational speedup

e modularity or convenience
It's hard to find a computer system where processes do notecatgp Consider the commands
you type at the Unix command line. Your shell process and tbegss that executes your com-

mand must cooperate. If you use a pipe to hook up two commaoddhave even more process
cooperation.

For the processes to cooperate, they must have a way to cacateiwith each other. Two com-
mon methods:

e shared variables — some segment of memory which is acoessibbth processes

e message passing — a process sends an explicit messageadoaived by another

We will consider a shared-memory communication.

CSC 507 Software Engineering Spring 2013

Producer-Consumer Problem

The classic example for studying cooperating processég iBtoducer-Consumer problem.

Producer Y N Consumer

Buffer

One or more produces processes is “producing” data. Theidattored in a buffer to be “con-
sumed” by one or more consumer processes.

The buffer may be:

e unbounded — We assume that the producer can continue producing itethstaring them
in the buffer at all times. However, the consumer must waitafo item to be inserted into
the buffer before it can take one out for consumption.

¢ bounded — The producer must also check to make sure there is spadald®an the buffer.

Bounded Buffer, buffer sizen
For simplicity, we will assume the objects being produced @e@nsumed arent values.

This solution leaves one buffer entry empty at all times:

e Shared data

int buffer[n];
i nt in=0;
i nt out =0;
e Producer process
while (1) {
produce item
while (((in+l)%) == out); /* busy wait =/

buffer[in]=item
i n=(1 n+l) %,

CSC 507 Software Engineering Spring 2013

e Consumer process

while (1) {
while (in==out); /* busy wait =*/
itemebuffer[out];
out =(out +1) %n;

consune item

Is there any danger with this solution in terms of concury@n®emember that these processes
can be interleaved in any order — the system could preempirtiticer at any time and run the
consumer.. Things to be careful about are shared referémeasiables.

Note that only one of the processes candify the variables n andout . Both use the values,
but only the producer modifiasn and only the consumer modifieait . Try to come up with a
situation that causes incorrect behavior — hopefully younoa

Perhaps we want to use the entire buffer...let's add a Vartalkeep track of how many items are
in the buffer, so we can tell the difference between an emmpdyaafull buffer:

e Shared data

int buffer[n];
int in=0;
i nt out =0;
i nt counter=0;

e Producer process
while (1) {
b.r;)duce item
\.Nﬁi.le (counter==n); /* busy wait =/
buffer[in]=item

i n=(i n+l) %n;
count er =count er +1;

e Consumer process

CSC 507 Software Engineering Spring 2013

while (1) {
while (counter==0); /* busy wait =/
i temrbuffer[out];
out =(out +1) %n;
count er =counter -1,

consune item

We can now use the entire buffer. However, there is a potafdiager here. We modifgount er
in both the producer and the consumer.

Everything looks fine, but let’s think about how a computeually executes those statements to
increment or decremegbunt er .

count er ++ really requires three machine instructions) lpad a register with the value of
count er’'s memory location,) increment the register, andi4{) store the register value back
in count er’s memory location. There’s no reason that the operatingesyxan’t switch the
process out in the middle of this.

Consider the two statements that modsiyunt er :

Producer | Consumer
P, RO = counter; C;y Rl = counter;
P, RO = RO + 1; C;y RL =RL - 1,
P; counter = RO; C3; counter = R1;

Consider one possible ordering; P, C; P; Cy C5, wherecount er =17 before starting. Uh oh.
What we have here israce condition.

You may be thinking, “well, what are the chances, one in aiomlthat the scheduler will choose
to preempt the process at exactly the wrong time?”

Doing something millions or billions of times isn’t reallzgat unusual for a computer, so it would
come up..

Some of the most difficult bugs to find in software (often in igtieg systems) arise from race
conditions.

This sort of interference comes up in painful ways when “rpebcesses are interacting.

Consider two processes modifying a linked list, one insgréind one removing. A context switch
at the wrong time can lead to a corrupted structure:

struct node {

struct node =*next;

}

CSC 507 Software Engineering Spring 2013

struct node xhead, =tail;

void insert(val) {
struct node *newnode;

newnode = get node();

newnode- >next = NULL

if (head == NULL){
head = tail = newnode;

} else { /| <==== THE WRONG PLACE
tail ->next = newnode;
tail = newnode;

}

voi d remove() {
/[l ... code to renpve value ...
head = head- >next;
if (head == NULL) tail = NULL;
return (val ue);

}

If the process executing insert is interrupted at “the wrplage” and then another process calls
remove until the list is empty, when the insert process resyrt will be operating on invalid
assumptions and the list will be corrupted.

In the bounded buffer, we need to make sure that when one gg@tarts modifyingount er,
that it finishes before the other can try to modify it. Thisuggssynchronization of the processes.

Process synchronization is one of the major topics of an @&pae of the biggest reasons | think
every programmer should take an OS course.

If there were mutliple producers or consumers, we would iz@same issue with the modification
of i n andout , so we can't rely on the “empty slot” approach in the more genease.

We need to make those statements that increment and ded¢remeart er atomic.

We say that the modification afount er is acritical section.

Critical Sections

The Critical-Section problem:

e 1 processes, all competing to use some shared data

e each process has a code segment (the critical section) ahwhared data is accessed

8

CSC 507 Software Engineering Spring 2013

while (1) {
<CS Entry>
critical section
<CS Exit>
non-critical section

¢ Need to ensure that when one process is executing in itsatrgection, no other process is
allowed to do so

Example: Intersection/traffic light analogy
Example: one-lane bridges during construction

Any solution to the critical section problem must satisfiet conditions:

1. Mutual exclusion: If processP, is executing in its critical section, then no other processe
can be executing in their critical sections. “One at a time.”

2. Progress. If no process is executing in its critical section and thexest some processes
that wish to enter their critical section, then the selecbbthe processes that will enter the
critical section next cannot be postponed indefinitely. tinoecessary waiting.”

3. Bounded waiting: A bound must exist on the number of times that other prosease al-
lowed to enter their critical sections after a process hadenaarequest to enter its critical
section and before that request is granted. “no starvatfgve must assume that each pro-
cess executes at non-zero speed, but make no assumptiansedative speeds of processes)

In an operating systems course, we would study ways to usevhae and operating system support

to provide the capabilities for programming languages ferafynchronization techniques (such
as mutual exclusion locks).

