
Computer Science 507
Software Engineering
The College of Saint Rose
Spring 2013

Topic Notes: Dangers of Concurrency

As programmers here in the multicore era, understanding concurrency is essential. While it is not
a major focus of this course, it seems appropriate to have at least a brief discussion of the issues.

Any single program that is going to make use of multiple processing cores at the same time will
need to consist of multipleprocesses or threads of control. These threads are often introduced and
managed by the programmer, though compilers can help in somecases.

Any modern programming language is likely to include support for multithreading, either at the
language level or through libraries.

Multicore Programming
Multithreaded programs are well suited to take advantage ofthe multiple processing cores found
in most modern computers. But writing a program to do so correctly and efficiently is challenging.

The following are some challenges that must be overcome:

• Dividing activities – the program needs to be broken down into separate tasks that can be
run concurrently.

• Load balance – the tasks need to perform similar amounts of work since the entire program
would run only as quickly as the slowest (most heavily loaded) task.

• Data partitioning – the data needed by each task should be associated with that task.

• Data dependency – if the execution of one task depends on a result computed by a second,
synchronization must be performed to make sure the result from the second task is available
before the first attempts to use it.

• Testing and debugging – execution of multithreaded programs includes tasks that execute
concurrently or in different interleavings. It is very difficult to ensure that a program works
correctly for all possible interleavings.

These issues will be discussed extensively in the Parallel and High Performance Computing course
next fall (take it!).

For today, we will just look at some examples in Java.

In my introductory Java programming classes, I like to introduce “active objects” – objects which
behave independently of user actions. These are classes that extend theActiveObject class

CSC 507 Software Engineering Spring 2013

in a teaching library called “ObjectDraw”, which encompasses what are usually termed threads of
control.

Java includes a class namedThread. Rather than presenting my introductory students (or you)
with “raw” Java threads,I will use thisActiveObject class.

Our goal here is mainly to discuss complications that arise with threads and provide some indica-
tions of how to handle them.

Interference
An ActiveObject or thread activates an extra “brain” for your program. What happens if those
brains give your program contradictory messages?

An important class of problems can arise with concurrency when there are several threads that
might try to update the same variable at the same time.

Consider an example of a bank with two ATMs which can be used to deposit and withdraw money.

See Example: ATM1

One of the ATMs will repeatedly withdraw $100 from the account while the other will repeatedly
deposit $100 in the account (see the difference in parameters in the constructors for the ATM’s).
When the user pushes the button, theactionPerformed method repeats the construction and
execution of the ATM objects.

The main items of interest here are thegetBalance andsetBalance methods. They do the
obvious things.

Therunmethod repeatedly deductschange from the account by first executingsharedBank.getBalance()
to get the balance and then executingsharedBank.setBalance(balance+change,ATM ID,change)
to update the balance.

The final balance in the account should be $1000, the same amount started with, as one of the ATM
objects withdraws $100 ten times, while the other deposits $100 ten times. If you run this code
enough, however, you will discover that the answer does not always turn out to be $1000! What
is causing the problems? Look at the program to see if you can determine what is going wrong
before reading further.

The error occurs because two different threads (objects of typeActiveObject) are updating the
same variable,balance. Each gets the balance from the bank, adds in its change, and then tells
the bank the new balance. However, it can happen that both ATMs get the balance before either of
them has the opportunity to update the balance.

For example, suppose ATM1 gets the balance of $1000, while ATM2 “simultaneously” gets the
balance of $1000 (they aren’t actually happening simultaneously if there is only one processor,
but for our purposes it can be helpful to think that way). Now ATM1 adds $100 to the balance
and updates the balance to $1100. ATM2 then removes $100 fromthe balance that it originally
got ($1000) and updates the balance to $900. Thus if the interleaving of operations of ATM1 and
ATM2 are such that both get balances before either registersthe new balance, the final balance will

2

CSC 507 Software Engineering Spring 2013

not reflect one of the two operations.

Clearly this is a problem, yet we would like to have the operations of the two ATMs interleaved.
(We could just run ATM1 to conclusion before starting up ATM2, but this does not model the usage
of ATM’s properly.)

We would like to ensure that if ATM1 queries the balance with the intent to change it and set a
new balance, that ATM2 does not read the original balance. Itis when both read the old balance
and both update that one of the transactions is lost. We attempt to remedy this by replacing the
setBalance method with achangeBalance method:

See Example: ATM2

Now rather than having separate methods to get and set the balance, we have a single method which
takes the amount of change and updates the balance. Because the getting and setting are no longer
separated by distinct method calls, the chances of interference are not as great. However there is
still the opportunity of interference between the calculation of the new balance and the update of
the value. We have artificially increased the chances of thisby adding thepause between the two.

Even if we remove that, we reduce the time between the calculation of the old balance and setting
of the new balance, but still allows the (at least theoretical) possibility of interference between the
calculation ofbalance+change and the assignment of that value tobalance. To be absolutely
safe, we must ensure that only one thread at a time can executethe methodchangeBalance.
We can do this in Java by using the keywordsynchronized.

If we attach the keywordsynchronized to methods in a class, then Java will ensure that only
one thread at a time will be executing any of those methods. For example we can label both
getBalance andchangeBalance assynchronized.

See Example: ATM3

Now if a thread associated with one ATM object is executing either of these methods, then no other
thread can execute either of the methods. For example, ifATM1 is executingchangeBalance,
thenATM2 will not be allowed to execute eitherchangeBalance or getBalance. Instead it
will wait until ATM1 has finished executing that method and then execute the desired method. (The
operating system is given the responsibility of schedulingthe threads’ access to the processor.)

A thread executing eitherchangeBalance or getBalance has no impact on another thread’s
attempts at executing any of the non-synchronized methods of the program. Thus the user-interface
thread can by executing theactionPerformed orstartATMs method whileATM1 is execut-
ing changeBalance.

Because of the use ofsynchronized, neither thread can interfere with the other, ensuring that
the final answer is the correct one. However, there is one disadvantage of using synchronized
methods – they cut down on the amount of concurrency in the system. This may slow down the
execution of the program, as one thread may be waiting for an operation to complete (e.g., a write
to the screen or a read from a file), while another might be ready to do something. The second
thread may be ready to use the processor, but if it is ready to execute a synchronized method and
the other thread is executing a synchronized method of the same object, then it may be blocked
from executing.

3

CSC 507 Software Engineering Spring 2013

This example may seem a bit contrived – we carefully made surethe pause times for the two ATMs
were the same and added a random pause inside the methods thatchange the balance to increase
the chances of interference. However, the interference could happen in each of our cases (except
the one with thesynchronized modifiers) even without the careful attempts to increase the
chances. Has anyone ever had some big program, even maybe a commercial program, crash in an
unexpected and non-reproducable manner? Perhaps a browseror even Windows itself? There’s
a pretty good chance that a lot of those kinds of crashes are the result of concurrency not being
dealt with carefully enough. Most of the time, things are fine– but once in a while just the right
combination of things is happening and there you go. Crash andburn.

There are many other complications involved in the use of concurrency – too many to go into detail
here. Concurrency can be quite challenging, and inattentionto details may result in programs that
don’t work as expected. Most of the programs that we have had you write which involve active
objects have been designed so that no interference is possible. We urge you to worry about the
possibilities of this happening when you use active objects. More advanced Computer Science
courses study concurrency in much more detail, including other problems that may arise and the
techniques to deal with them.

Cooperating Processes
An Independent process is not affected by other running processes.

Cooperating processes may affect each other, hopefully in some controlled and useful way.

Why cooperating processes?

• information sharing

• computational speedup

• modularity or convenience

It’s hard to find a computer system where processes do not cooperate. Consider the commands
you type at the Unix command line. Your shell process and the process that executes your com-
mand must cooperate. If you use a pipe to hook up two commands,you have even more process
cooperation.

For the processes to cooperate, they must have a way to communicate with each other. Two com-
mon methods:

• shared variables – some segment of memory which is accessible to both processes

• message passing – a process sends an explicit message that isreceived by another

We will consider a shared-memory communication.

4

CSC 507 Software Engineering Spring 2013

Producer-Consumer Problem

The classic example for studying cooperating processes is the Producer-Consumer problem.

Buffer

Producer Consumer

One or more produces processes is “producing” data. This data is stored in a buffer to be “con-
sumed” by one or more consumer processes.

The buffer may be:

• unbounded – We assume that the producer can continue producing items and storing them
in the buffer at all times. However, the consumer must wait for an item to be inserted into
the buffer before it can take one out for consumption.

• bounded – The producer must also check to make sure there is space available in the buffer.

Bounded Buffer, buffer size n

For simplicity, we will assume the objects being produced and consumed areint values.

This solution leaves one buffer entry empty at all times:

• Shared data

int buffer[n];
int in=0;
int out=0;

• Producer process

while (1) {
...
produce item;
...
while (((in+1)%n) == out); /* busy wait */
buffer[in]=item;
in=(in+1)%n;

}

5

CSC 507 Software Engineering Spring 2013

• Consumer process

while (1) {
while (in==out); /* busy wait */
item=buffer[out];
out=(out+1)%n;
...
consume item;
...

}

Is there any danger with this solution in terms of concurrency? Remember that these processes
can be interleaved in any order – the system could preempt theproducer at any time and run the
consumer.. Things to be careful about are shared referencesto variables.

Note that only one of the processes canmodify the variablesin andout. Both use the values,
but only the producer modifiesin and only the consumer modifiesout. Try to come up with a
situation that causes incorrect behavior – hopefully you cannot.

Perhaps we want to use the entire buffer...let’s add a variable to keep track of how many items are
in the buffer, so we can tell the difference between an empty and a full buffer:

• Shared data

int buffer[n];
int in=0;
int out=0;
int counter=0;

• Producer process

while (1) {
...
produce item;
...
while (counter==n); /* busy wait */
buffer[in]=item;
in=(in+1)%n;
counter=counter+1;

}

• Consumer process

6

CSC 507 Software Engineering Spring 2013

while (1) {
while (counter==0); /* busy wait */
item=buffer[out];
out=(out+1)%n;
counter=counter-1;
...
consume item;
...

}

We can now use the entire buffer. However, there is a potential danger here. We modifycounter
in both the producer and the consumer.

Everything looks fine, but let’s think about how a computer actually executes those statements to
increment or decrementcounter.

counter++ really requires three machine instructions: (i) load a register with the value of
counter’s memory location, (ii) increment the register, and (iii) store the register value back
in counter’s memory location. There’s no reason that the operating system can’t switch the
process out in the middle of this.

Consider the two statements that modifycounter:

Producer Consumer
P1 R0 = counter; C1 R1 = counter;
P2 R0 = R0 + 1; C2 R1 = R1 - 1;
P3 counter = R0; C3 counter = R1;

Consider one possible ordering:P1 P2 C1 P3 C2 C3 , wherecounter=17 before starting. Uh oh.

What we have here is arace condition.

You may be thinking, “well, what are the chances, one in a million that the scheduler will choose
to preempt the process at exactly the wrong time?”

Doing something millions or billions of times isn’t really that unusual for a computer, so it would
come up..

Some of the most difficult bugs to find in software (often in operating systems) arise from race
conditions.

This sort of interference comes up in painful ways when “real” processes are interacting.

Consider two processes modifying a linked list, one inserting and one removing. A context switch
at the wrong time can lead to a corrupted structure:

struct node {
...
struct node *next;

}

7

CSC 507 Software Engineering Spring 2013

struct node *head, *tail;

void insert(val) {
struct node *newnode;

newnode = getnode();
newnode->next = NULL;
if (head == NULL){

head = tail = newnode;
} else { // <==== THE WRONG PLACE
tail->next = newnode;
tail = newnode;

}
}

void remove() {
// ... code to remove value ...
head = head->next;
if (head == NULL) tail = NULL;
return (value);

}

If the process executing insert is interrupted at “the wrongplace” and then another process calls
remove until the list is empty, when the insert process resumes, it will be operating on invalid
assumptions and the list will be corrupted.

In the bounded buffer, we need to make sure that when one process starts modifyingcounter,
that it finishes before the other can try to modify it. This requiressynchronization of the processes.

Process synchronization is one of the major topics of an OS, and one of the biggest reasons I think
every programmer should take an OS course.

If there were mutliple producers or consumers, we would havethe same issue with the modification
of in andout, so we can’t rely on the “empty slot” approach in the more general case.

We need to make those statements that increment and decrement counter atomic.

We say that the modification ofcounter is acritical section.

Critical Sections
The Critical-Section problem:

• n processes, all competing to use some shared data

• each process has a code segment (the critical section) in which shared data is accessed

8

CSC 507 Software Engineering Spring 2013

while (1) {
<CS Entry>
critical section
<CS Exit>
non-critical section

}

• Need to ensure that when one process is executing in its critical section, no other process is
allowed to do so

Example: Intersection/traffic light analogy

Example: one-lane bridges during construction

Any solution to the critical section problem must satisfy three conditions:

1. Mutual exclusion: If processPi is executing in its critical section, then no other processes
can be executing in their critical sections. “One at a time.”

2. Progress: If no process is executing in its critical section and thereexist some processes
that wish to enter their critical section, then the selection of the processes that will enter the
critical section next cannot be postponed indefinitely. “nounnecessary waiting.”

3. Bounded waiting: A bound must exist on the number of times that other processes are al-
lowed to enter their critical sections after a process has made a request to enter its critical
section and before that request is granted. “no starvation.” (We must assume that each pro-
cess executes at non-zero speed, but make no assumptions about relative speeds of processes)

In an operating systems course, we would study ways to use hardware and operating system support
to provide the capabilities for programming languages to offer synchronization techniques (such
as mutual exclusion locks).

9

