
This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94551

LLNL-PRES-605452

SC	 ’12	 ◆	 November	 15,	 2012

Mapping	 Applications	 with	 Collectives	 over	
Sub-‐communicators	 on	 Torus	 Networks

Abhinav	 Bhatele,	 Todd	 Gamblin,	 Steven	 H.	 Langer,	 Peer-‐Timo	 Bremer,	 Erik	 W.	 Draeger,	
Bernd	 Hamann,	 Katherine	 E.	 Isaacs,	 Aaditya	 G.	 Landge,	 Joshua	 A.	 Levine,	 Valerio	 Pascucci,	
Martin	 Schulz,	 Charles	 H.	 Still

Monday, February 11, 13

LLNL-PRES-605452 PAVE @ SC’12

Topology aware task mapping
• What is mapping - layout/placement of tasks/processes in an application on

the physical interconnect

• Does not require any changes to the application

2

Monday, February 11, 13

LLNL-PRES-605452 PAVE @ SC’12

Topology aware task mapping
• What is mapping - layout/placement of tasks/processes in an application on

the physical interconnect

• Does not require any changes to the application

2

Monday, February 11, 13

LLNL-PRES-605452 PAVE @ SC’12

Topology aware task mapping
• What is mapping - layout/placement of tasks/processes in an application on

the physical interconnect

• Does not require any changes to the application

2

Monday, February 11, 13

LLNL-PRES-605452 PAVE @ SC’12

Topology aware task mapping
• What is mapping - layout/placement of tasks/processes in an application on

the physical interconnect

• Does not require any changes to the application

2

Monday, February 11, 13

LLNL-PRES-605452 PAVE @ SC’12

Topology aware task mapping
• What is mapping - layout/placement of tasks/processes in an application on

the physical interconnect

• Does not require any changes to the application

2

• Goals:

• Balance computational load

• Minimize contention (optimize latency or bandwidth)

Monday, February 11, 13

LLNL-PRES-605452 PAVE @ SC’12

Maximize bandwidth?

• Traditionally, research has focused on bringing tasks
closer to reduce the number of hops

• Minimizes latency, but more importantly link contention

• For applications that send large messages this might
not be optimal

3

1D

2D

3D 4D

Monday, February 11, 13

LLNL-PRES-605452 PAVE @ SC’12

Maximize bandwidth?

• Traditionally, research has focused on bringing tasks
closer to reduce the number of hops

• Minimizes latency, but more importantly link contention

• For applications that send large messages this might
not be optimal

3

1D

2D

3D 4D1D

2D

3D 4D

Monday, February 11, 13

LLNL-PRES-605452 PAVE @ SC’12

Maximize bandwidth?

• Traditionally, research has focused on bringing tasks
closer to reduce the number of hops

• Minimizes latency, but more importantly link contention

• For applications that send large messages this might
not be optimal

3

1D

2D

3D 4D1D

2D

3D 4D1D

2D

3D 4D

Monday, February 11, 13

LLNL-PRES-605452 PAVE @ SC’12

Maximize bandwidth?

• Traditionally, research has focused on bringing tasks
closer to reduce the number of hops

• Minimizes latency, but more importantly link contention

• For applications that send large messages this might
not be optimal

3

1D

2D

3D 4D1D

2D

3D 4D1D

2D

3D 4D1D

2D

3D 4D

Monday, February 11, 13

LLNL-PRES-605452 PAVE @ SC’12

Collectives

4

��

������

�������

�������

�������

�������

�� ��� 	�� �
� ���� ���� ���� ��

�
�
��
��
��

�������������������

������������������� ���!"�������#���

����������
����������

$�����������%������
$�����������%������
$�����
�����%�
����

��%�
�����%�������%������

Monday, February 11, 13

LLNL-PRES-605452 PAVE @ SC’12

Improving bandwidth utilization

• Placing communicating pairs farther apart in multiple
dimensions to increase “spare links”

• Placing processes on a cube or plane instead of a line
(collectives)

• Use wraparound links for additional routes

5

Monday, February 11, 13

LLNL-PRES-605452 PAVE @ SC’12

Rubik

• We have developed a mapping tool focusing on:

• structured applications that are bandwidth-bound, use collectives
over sub-communicators

• built-in operations that can increase effective bandwidth on torus
networks based on heuristics

• Input:

• Application topology with subsets identified

• Processor topology

• Set of operations to perform

• Output: map file for job launcher

6

Monday, February 11, 13

LLNL-PRES-605452 PAVE @ SC’12

Idea of partition trees

• Recursive partitioning of n-D cartesian spaces

• n can be 2, 3, 4, 5 or any other number

• Intermediate nodes in the tree represent

• closely communicating groups in application space, or

• sub-domains of processors in network space

• Leaf nodes represent processes in the application or
nodes on the network

7

Monday, February 11, 13

LLNL-PRES-605452 PAVE @ SC’12

Creating a partition tree

8

Monday, February 11, 13

LLNL-PRES-605452 PAVE @ SC’12

Creating a partition tree

8

domain = box([4, 4, 4])

Monday, February 11, 13

LLNL-PRES-605452 PAVE @ SC’12

Creating a partition tree

8

1 app = box([4,4,4])
2 app.div([2,1,4])

(a) div operation

1 app = box([4,4,4])
2 app.tile([2,4,1])

(b) tile operation

1 app = box([4,4,4])
2 app.mod([2,2,2])

(c) mod operation

1 app = box([4,4,4])
2 app.cut([2,2,2],
3 [div,div,mod])

(d) cut operation

Fig. 5: Partitioning operations in Rubik: div, tile, mod and cut

(a) One level (b) Two levels (c) Three levels

1 domain = box([4,4,4]) # a. Create a cube
2 domain.div([1,1,2]) # b. Divide into halves
3 for child in domain:
4 child.div([2,1,2]) # c. Divide each half into 4

Fig. 4: Incremental partition tree construction using the div operation

split this tree along the third dimension into two boxes of 32
tasks (Fig. 4b), which fully cover the original box. Lines 3 and
4 loop over the newly created children and further split each
child into 4 children of its own, with 8 tasks each (Fig. 4c).

The cubes at the top of Fig. 4 show the Cartesian structure
of the tree. Leaf nodes are nested in transparent halos of their
parent boxes. Each leaf box is given a unique color, and object
numbering (MPI rank) within each leaf box is shown using
a color gradient. The lowest rank within a leaf box has the
lightest color. The tree diagrams below the cubes show the
partition tree structure with boxes shown as nodes and labeled
by the number of tasks they contain.

B. Partitioning operations

The div operation used in the previous section is one
of four operations in Rubik that divide a box into children:
div, tile, mod and cut. Like the box constructor, these
operations can be used on an arbitrary number of dimensions.

Div. Section III-A showed two hierarchical divs to illustrate
the concept of the partition tree and Fig. 5a shows how we
can chop a 4 � 4 � 4 cube into 8 leaves of 8 objects each
using a single div. div takes a set of divisors d0, d1, ...dn
as argument, one for each dimension of the box it divides. It
slices the parent box into di groups along dimension i, creatingQn�1

i=0 di child boxes. The child boxes form a d0�d1�...�dn
space where the task at position (x0, x1, ..., xn) in the parent
box is in the child box with index (x0

d0
, x1
d1
, ..., xn

dn
).

Tile. While div divides a space into a fixed number number
of groups, tile divides a space into fixed-size child boxes,
or tiles. The number of tiles created depends on the size of
the box that tile is applied to. Arguments to tile are
tile dimensions rather than divisors. Formally, tile on a
D0 �D1 � ...�Dn space is equivalent to div with divisors
D0
d0

, D1
d1

, ..., Dn
dn

. Figs. 5a and 5b show the same boxes created
using div and tile.
Mod. The mod operation shown in Fig. 5c is similar to div in
that it also takes a list of n divisors and creates

Qn�1
i=0 di child

boxes. However, mod’s child boxes are interleaved, not con-
tiguous. With mod, task (x0, x1, ..., xn) will be a member of
the child box ((x0 mod d0), (x1 mod d1), ..., (xn mod dn)).
Cut. The cut operation shown in Fig. 5d is a generalization
of div and mod. cut takes the same set of divisors as div
and mod, but it also takes a second list that specifies the man-
ner of slicing in each dimension. In the picture, we can clearly
see that cut creates contiguous slices along dimensions where
div is specified, but along the third dimension which uses
mod, the child boxes are interleaved.

C. Mapping
Partition trees in Rubik are used not only to specify groups

of tasks in a Cartesian application domain, but also to specify
groups of processors on the physical network. The tool is
designed to simplify the process of mapping tasks between
spaces with potentially different dimensionality. A fundamen-
tal example is that of mapping planes to boxes. Scientific
applications may perform collective operations within a plane
in the application domain, but mapping a plane directly onto
a 3D mesh network will not maximize the number of physical
links available for communication within the plane. Mapping

domain = box([4, 4, 4])

Monday, February 11, 13

LLNL-PRES-605452 PAVE @ SC’12

Creating a partition tree

8

1 app = box([4,4,4])
2 app.div([2,1,4])

(a) div operation

1 app = box([4,4,4])
2 app.tile([2,4,1])

(b) tile operation

1 app = box([4,4,4])
2 app.mod([2,2,2])

(c) mod operation

1 app = box([4,4,4])
2 app.cut([2,2,2],
3 [div,div,mod])

(d) cut operation

Fig. 5: Partitioning operations in Rubik: div, tile, mod and cut

(a) One level (b) Two levels (c) Three levels

1 domain = box([4,4,4]) # a. Create a cube
2 domain.div([1,1,2]) # b. Divide into halves
3 for child in domain:
4 child.div([2,1,2]) # c. Divide each half into 4

Fig. 4: Incremental partition tree construction using the div operation

split this tree along the third dimension into two boxes of 32
tasks (Fig. 4b), which fully cover the original box. Lines 3 and
4 loop over the newly created children and further split each
child into 4 children of its own, with 8 tasks each (Fig. 4c).

The cubes at the top of Fig. 4 show the Cartesian structure
of the tree. Leaf nodes are nested in transparent halos of their
parent boxes. Each leaf box is given a unique color, and object
numbering (MPI rank) within each leaf box is shown using
a color gradient. The lowest rank within a leaf box has the
lightest color. The tree diagrams below the cubes show the
partition tree structure with boxes shown as nodes and labeled
by the number of tasks they contain.

B. Partitioning operations

The div operation used in the previous section is one
of four operations in Rubik that divide a box into children:
div, tile, mod and cut. Like the box constructor, these
operations can be used on an arbitrary number of dimensions.

Div. Section III-A showed two hierarchical divs to illustrate
the concept of the partition tree and Fig. 5a shows how we
can chop a 4 � 4 � 4 cube into 8 leaves of 8 objects each
using a single div. div takes a set of divisors d0, d1, ...dn
as argument, one for each dimension of the box it divides. It
slices the parent box into di groups along dimension i, creatingQn�1

i=0 di child boxes. The child boxes form a d0�d1�...�dn
space where the task at position (x0, x1, ..., xn) in the parent
box is in the child box with index (x0

d0
, x1
d1
, ..., xn

dn
).

Tile. While div divides a space into a fixed number number
of groups, tile divides a space into fixed-size child boxes,
or tiles. The number of tiles created depends on the size of
the box that tile is applied to. Arguments to tile are
tile dimensions rather than divisors. Formally, tile on a
D0 �D1 � ...�Dn space is equivalent to div with divisors
D0
d0

, D1
d1

, ..., Dn
dn

. Figs. 5a and 5b show the same boxes created
using div and tile.
Mod. The mod operation shown in Fig. 5c is similar to div in
that it also takes a list of n divisors and creates

Qn�1
i=0 di child

boxes. However, mod’s child boxes are interleaved, not con-
tiguous. With mod, task (x0, x1, ..., xn) will be a member of
the child box ((x0 mod d0), (x1 mod d1), ..., (xn mod dn)).
Cut. The cut operation shown in Fig. 5d is a generalization
of div and mod. cut takes the same set of divisors as div
and mod, but it also takes a second list that specifies the man-
ner of slicing in each dimension. In the picture, we can clearly
see that cut creates contiguous slices along dimensions where
div is specified, but along the third dimension which uses
mod, the child boxes are interleaved.

C. Mapping
Partition trees in Rubik are used not only to specify groups

of tasks in a Cartesian application domain, but also to specify
groups of processors on the physical network. The tool is
designed to simplify the process of mapping tasks between
spaces with potentially different dimensionality. A fundamen-
tal example is that of mapping planes to boxes. Scientific
applications may perform collective operations within a plane
in the application domain, but mapping a plane directly onto
a 3D mesh network will not maximize the number of physical
links available for communication within the plane. Mapping

domain = box([4, 4, 4])
64

Monday, February 11, 13

LLNL-PRES-605452 PAVE @ SC’12

Creating a partition tree

8

1 app = box([4,4,4])
2 app.div([2,1,4])

(a) div operation

1 app = box([4,4,4])
2 app.tile([2,4,1])

(b) tile operation

1 app = box([4,4,4])
2 app.mod([2,2,2])

(c) mod operation

1 app = box([4,4,4])
2 app.cut([2,2,2],
3 [div,div,mod])

(d) cut operation

Fig. 5: Partitioning operations in Rubik: div, tile, mod and cut

(a) One level (b) Two levels (c) Three levels

1 domain = box([4,4,4]) # a. Create a cube
2 domain.div([1,1,2]) # b. Divide into halves
3 for child in domain:
4 child.div([2,1,2]) # c. Divide each half into 4

Fig. 4: Incremental partition tree construction using the div operation

split this tree along the third dimension into two boxes of 32
tasks (Fig. 4b), which fully cover the original box. Lines 3 and
4 loop over the newly created children and further split each
child into 4 children of its own, with 8 tasks each (Fig. 4c).

The cubes at the top of Fig. 4 show the Cartesian structure
of the tree. Leaf nodes are nested in transparent halos of their
parent boxes. Each leaf box is given a unique color, and object
numbering (MPI rank) within each leaf box is shown using
a color gradient. The lowest rank within a leaf box has the
lightest color. The tree diagrams below the cubes show the
partition tree structure with boxes shown as nodes and labeled
by the number of tasks they contain.

B. Partitioning operations

The div operation used in the previous section is one
of four operations in Rubik that divide a box into children:
div, tile, mod and cut. Like the box constructor, these
operations can be used on an arbitrary number of dimensions.

Div. Section III-A showed two hierarchical divs to illustrate
the concept of the partition tree and Fig. 5a shows how we
can chop a 4 � 4 � 4 cube into 8 leaves of 8 objects each
using a single div. div takes a set of divisors d0, d1, ...dn
as argument, one for each dimension of the box it divides. It
slices the parent box into di groups along dimension i, creatingQn�1

i=0 di child boxes. The child boxes form a d0�d1�...�dn
space where the task at position (x0, x1, ..., xn) in the parent
box is in the child box with index (x0

d0
, x1
d1
, ..., xn

dn
).

Tile. While div divides a space into a fixed number number
of groups, tile divides a space into fixed-size child boxes,
or tiles. The number of tiles created depends on the size of
the box that tile is applied to. Arguments to tile are
tile dimensions rather than divisors. Formally, tile on a
D0 �D1 � ...�Dn space is equivalent to div with divisors
D0
d0

, D1
d1

, ..., Dn
dn

. Figs. 5a and 5b show the same boxes created
using div and tile.
Mod. The mod operation shown in Fig. 5c is similar to div in
that it also takes a list of n divisors and creates

Qn�1
i=0 di child

boxes. However, mod’s child boxes are interleaved, not con-
tiguous. With mod, task (x0, x1, ..., xn) will be a member of
the child box ((x0 mod d0), (x1 mod d1), ..., (xn mod dn)).
Cut. The cut operation shown in Fig. 5d is a generalization
of div and mod. cut takes the same set of divisors as div
and mod, but it also takes a second list that specifies the man-
ner of slicing in each dimension. In the picture, we can clearly
see that cut creates contiguous slices along dimensions where
div is specified, but along the third dimension which uses
mod, the child boxes are interleaved.

C. Mapping
Partition trees in Rubik are used not only to specify groups

of tasks in a Cartesian application domain, but also to specify
groups of processors on the physical network. The tool is
designed to simplify the process of mapping tasks between
spaces with potentially different dimensionality. A fundamen-
tal example is that of mapping planes to boxes. Scientific
applications may perform collective operations within a plane
in the application domain, but mapping a plane directly onto
a 3D mesh network will not maximize the number of physical
links available for communication within the plane. Mapping

domain = box([4, 4, 4])
64

domain.tile([4, 4, 2])

Monday, February 11, 13

LLNL-PRES-605452 PAVE @ SC’12

Creating a partition tree

8

1 app = box([4,4,4])
2 app.div([2,1,4])

(a) div operation

1 app = box([4,4,4])
2 app.tile([2,4,1])

(b) tile operation

1 app = box([4,4,4])
2 app.mod([2,2,2])

(c) mod operation

1 app = box([4,4,4])
2 app.cut([2,2,2],
3 [div,div,mod])

(d) cut operation

Fig. 5: Partitioning operations in Rubik: div, tile, mod and cut

(a) One level (b) Two levels (c) Three levels

1 domain = box([4,4,4]) # a. Create a cube
2 domain.div([1,1,2]) # b. Divide into halves
3 for child in domain:
4 child.div([2,1,2]) # c. Divide each half into 4

Fig. 4: Incremental partition tree construction using the div operation

split this tree along the third dimension into two boxes of 32
tasks (Fig. 4b), which fully cover the original box. Lines 3 and
4 loop over the newly created children and further split each
child into 4 children of its own, with 8 tasks each (Fig. 4c).

The cubes at the top of Fig. 4 show the Cartesian structure
of the tree. Leaf nodes are nested in transparent halos of their
parent boxes. Each leaf box is given a unique color, and object
numbering (MPI rank) within each leaf box is shown using
a color gradient. The lowest rank within a leaf box has the
lightest color. The tree diagrams below the cubes show the
partition tree structure with boxes shown as nodes and labeled
by the number of tasks they contain.

B. Partitioning operations

The div operation used in the previous section is one
of four operations in Rubik that divide a box into children:
div, tile, mod and cut. Like the box constructor, these
operations can be used on an arbitrary number of dimensions.

Div. Section III-A showed two hierarchical divs to illustrate
the concept of the partition tree and Fig. 5a shows how we
can chop a 4 � 4 � 4 cube into 8 leaves of 8 objects each
using a single div. div takes a set of divisors d0, d1, ...dn
as argument, one for each dimension of the box it divides. It
slices the parent box into di groups along dimension i, creatingQn�1

i=0 di child boxes. The child boxes form a d0�d1�...�dn
space where the task at position (x0, x1, ..., xn) in the parent
box is in the child box with index (x0

d0
, x1
d1
, ..., xn

dn
).

Tile. While div divides a space into a fixed number number
of groups, tile divides a space into fixed-size child boxes,
or tiles. The number of tiles created depends on the size of
the box that tile is applied to. Arguments to tile are
tile dimensions rather than divisors. Formally, tile on a
D0 �D1 � ...�Dn space is equivalent to div with divisors
D0
d0

, D1
d1

, ..., Dn
dn

. Figs. 5a and 5b show the same boxes created
using div and tile.
Mod. The mod operation shown in Fig. 5c is similar to div in
that it also takes a list of n divisors and creates

Qn�1
i=0 di child

boxes. However, mod’s child boxes are interleaved, not con-
tiguous. With mod, task (x0, x1, ..., xn) will be a member of
the child box ((x0 mod d0), (x1 mod d1), ..., (xn mod dn)).
Cut. The cut operation shown in Fig. 5d is a generalization
of div and mod. cut takes the same set of divisors as div
and mod, but it also takes a second list that specifies the man-
ner of slicing in each dimension. In the picture, we can clearly
see that cut creates contiguous slices along dimensions where
div is specified, but along the third dimension which uses
mod, the child boxes are interleaved.

C. Mapping
Partition trees in Rubik are used not only to specify groups

of tasks in a Cartesian application domain, but also to specify
groups of processors on the physical network. The tool is
designed to simplify the process of mapping tasks between
spaces with potentially different dimensionality. A fundamen-
tal example is that of mapping planes to boxes. Scientific
applications may perform collective operations within a plane
in the application domain, but mapping a plane directly onto
a 3D mesh network will not maximize the number of physical
links available for communication within the plane. Mapping

1 app = box([4,4,4])
2 app.div([2,1,4])

(a) div operation

1 app = box([4,4,4])
2 app.tile([2,4,1])

(b) tile operation

1 app = box([4,4,4])
2 app.mod([2,2,2])

(c) mod operation

1 app = box([4,4,4])
2 app.cut([2,2,2],
3 [div,div,mod])

(d) cut operation

Fig. 5: Partitioning operations in Rubik: div, tile, mod and cut

(a) One level (b) Two levels (c) Three levels

1 domain = box([4,4,4]) # a. Create a cube
2 domain.div([1,1,2]) # b. Divide into halves
3 for child in domain:
4 child.div([2,1,2]) # c. Divide each half into 4

Fig. 4: Incremental partition tree construction using the div operation

split this tree along the third dimension into two boxes of 32
tasks (Fig. 4b), which fully cover the original box. Lines 3 and
4 loop over the newly created children and further split each
child into 4 children of its own, with 8 tasks each (Fig. 4c).

The cubes at the top of Fig. 4 show the Cartesian structure
of the tree. Leaf nodes are nested in transparent halos of their
parent boxes. Each leaf box is given a unique color, and object
numbering (MPI rank) within each leaf box is shown using
a color gradient. The lowest rank within a leaf box has the
lightest color. The tree diagrams below the cubes show the
partition tree structure with boxes shown as nodes and labeled
by the number of tasks they contain.

B. Partitioning operations

The div operation used in the previous section is one
of four operations in Rubik that divide a box into children:
div, tile, mod and cut. Like the box constructor, these
operations can be used on an arbitrary number of dimensions.

Div. Section III-A showed two hierarchical divs to illustrate
the concept of the partition tree and Fig. 5a shows how we
can chop a 4 � 4 � 4 cube into 8 leaves of 8 objects each
using a single div. div takes a set of divisors d0, d1, ...dn
as argument, one for each dimension of the box it divides. It
slices the parent box into di groups along dimension i, creatingQn�1

i=0 di child boxes. The child boxes form a d0�d1�...�dn
space where the task at position (x0, x1, ..., xn) in the parent
box is in the child box with index (x0

d0
, x1
d1
, ..., xn

dn
).

Tile. While div divides a space into a fixed number number
of groups, tile divides a space into fixed-size child boxes,
or tiles. The number of tiles created depends on the size of
the box that tile is applied to. Arguments to tile are
tile dimensions rather than divisors. Formally, tile on a
D0 �D1 � ...�Dn space is equivalent to div with divisors
D0
d0

, D1
d1

, ..., Dn
dn

. Figs. 5a and 5b show the same boxes created
using div and tile.
Mod. The mod operation shown in Fig. 5c is similar to div in
that it also takes a list of n divisors and creates

Qn�1
i=0 di child

boxes. However, mod’s child boxes are interleaved, not con-
tiguous. With mod, task (x0, x1, ..., xn) will be a member of
the child box ((x0 mod d0), (x1 mod d1), ..., (xn mod dn)).
Cut. The cut operation shown in Fig. 5d is a generalization
of div and mod. cut takes the same set of divisors as div
and mod, but it also takes a second list that specifies the man-
ner of slicing in each dimension. In the picture, we can clearly
see that cut creates contiguous slices along dimensions where
div is specified, but along the third dimension which uses
mod, the child boxes are interleaved.

C. Mapping
Partition trees in Rubik are used not only to specify groups

of tasks in a Cartesian application domain, but also to specify
groups of processors on the physical network. The tool is
designed to simplify the process of mapping tasks between
spaces with potentially different dimensionality. A fundamen-
tal example is that of mapping planes to boxes. Scientific
applications may perform collective operations within a plane
in the application domain, but mapping a plane directly onto
a 3D mesh network will not maximize the number of physical
links available for communication within the plane. Mapping

domain = box([4, 4, 4])
64

domain.tile([4, 4, 2])

Monday, February 11, 13

LLNL-PRES-605452 PAVE @ SC’12

Creating a partition tree

8

1 app = box([4,4,4])
2 app.div([2,1,4])

(a) div operation

1 app = box([4,4,4])
2 app.tile([2,4,1])

(b) tile operation

1 app = box([4,4,4])
2 app.mod([2,2,2])

(c) mod operation

1 app = box([4,4,4])
2 app.cut([2,2,2],
3 [div,div,mod])

(d) cut operation

Fig. 5: Partitioning operations in Rubik: div, tile, mod and cut

(a) One level (b) Two levels (c) Three levels

1 domain = box([4,4,4]) # a. Create a cube
2 domain.div([1,1,2]) # b. Divide into halves
3 for child in domain:
4 child.div([2,1,2]) # c. Divide each half into 4

Fig. 4: Incremental partition tree construction using the div operation

split this tree along the third dimension into two boxes of 32
tasks (Fig. 4b), which fully cover the original box. Lines 3 and
4 loop over the newly created children and further split each
child into 4 children of its own, with 8 tasks each (Fig. 4c).

The cubes at the top of Fig. 4 show the Cartesian structure
of the tree. Leaf nodes are nested in transparent halos of their
parent boxes. Each leaf box is given a unique color, and object
numbering (MPI rank) within each leaf box is shown using
a color gradient. The lowest rank within a leaf box has the
lightest color. The tree diagrams below the cubes show the
partition tree structure with boxes shown as nodes and labeled
by the number of tasks they contain.

B. Partitioning operations

The div operation used in the previous section is one
of four operations in Rubik that divide a box into children:
div, tile, mod and cut. Like the box constructor, these
operations can be used on an arbitrary number of dimensions.

Div. Section III-A showed two hierarchical divs to illustrate
the concept of the partition tree and Fig. 5a shows how we
can chop a 4 � 4 � 4 cube into 8 leaves of 8 objects each
using a single div. div takes a set of divisors d0, d1, ...dn
as argument, one for each dimension of the box it divides. It
slices the parent box into di groups along dimension i, creatingQn�1

i=0 di child boxes. The child boxes form a d0�d1�...�dn
space where the task at position (x0, x1, ..., xn) in the parent
box is in the child box with index (x0

d0
, x1
d1
, ..., xn

dn
).

Tile. While div divides a space into a fixed number number
of groups, tile divides a space into fixed-size child boxes,
or tiles. The number of tiles created depends on the size of
the box that tile is applied to. Arguments to tile are
tile dimensions rather than divisors. Formally, tile on a
D0 �D1 � ...�Dn space is equivalent to div with divisors
D0
d0

, D1
d1

, ..., Dn
dn

. Figs. 5a and 5b show the same boxes created
using div and tile.
Mod. The mod operation shown in Fig. 5c is similar to div in
that it also takes a list of n divisors and creates

Qn�1
i=0 di child

boxes. However, mod’s child boxes are interleaved, not con-
tiguous. With mod, task (x0, x1, ..., xn) will be a member of
the child box ((x0 mod d0), (x1 mod d1), ..., (xn mod dn)).
Cut. The cut operation shown in Fig. 5d is a generalization
of div and mod. cut takes the same set of divisors as div
and mod, but it also takes a second list that specifies the man-
ner of slicing in each dimension. In the picture, we can clearly
see that cut creates contiguous slices along dimensions where
div is specified, but along the third dimension which uses
mod, the child boxes are interleaved.

C. Mapping
Partition trees in Rubik are used not only to specify groups

of tasks in a Cartesian application domain, but also to specify
groups of processors on the physical network. The tool is
designed to simplify the process of mapping tasks between
spaces with potentially different dimensionality. A fundamen-
tal example is that of mapping planes to boxes. Scientific
applications may perform collective operations within a plane
in the application domain, but mapping a plane directly onto
a 3D mesh network will not maximize the number of physical
links available for communication within the plane. Mapping

1 app = box([4,4,4])
2 app.div([2,1,4])

(a) div operation

1 app = box([4,4,4])
2 app.tile([2,4,1])

(b) tile operation

1 app = box([4,4,4])
2 app.mod([2,2,2])

(c) mod operation

1 app = box([4,4,4])
2 app.cut([2,2,2],
3 [div,div,mod])

(d) cut operation

Fig. 5: Partitioning operations in Rubik: div, tile, mod and cut

(a) One level (b) Two levels (c) Three levels

1 domain = box([4,4,4]) # a. Create a cube
2 domain.div([1,1,2]) # b. Divide into halves
3 for child in domain:
4 child.div([2,1,2]) # c. Divide each half into 4

Fig. 4: Incremental partition tree construction using the div operation

split this tree along the third dimension into two boxes of 32
tasks (Fig. 4b), which fully cover the original box. Lines 3 and
4 loop over the newly created children and further split each
child into 4 children of its own, with 8 tasks each (Fig. 4c).

The cubes at the top of Fig. 4 show the Cartesian structure
of the tree. Leaf nodes are nested in transparent halos of their
parent boxes. Each leaf box is given a unique color, and object
numbering (MPI rank) within each leaf box is shown using
a color gradient. The lowest rank within a leaf box has the
lightest color. The tree diagrams below the cubes show the
partition tree structure with boxes shown as nodes and labeled
by the number of tasks they contain.

B. Partitioning operations

The div operation used in the previous section is one
of four operations in Rubik that divide a box into children:
div, tile, mod and cut. Like the box constructor, these
operations can be used on an arbitrary number of dimensions.

Div. Section III-A showed two hierarchical divs to illustrate
the concept of the partition tree and Fig. 5a shows how we
can chop a 4 � 4 � 4 cube into 8 leaves of 8 objects each
using a single div. div takes a set of divisors d0, d1, ...dn
as argument, one for each dimension of the box it divides. It
slices the parent box into di groups along dimension i, creatingQn�1

i=0 di child boxes. The child boxes form a d0�d1�...�dn
space where the task at position (x0, x1, ..., xn) in the parent
box is in the child box with index (x0

d0
, x1
d1
, ..., xn

dn
).

Tile. While div divides a space into a fixed number number
of groups, tile divides a space into fixed-size child boxes,
or tiles. The number of tiles created depends on the size of
the box that tile is applied to. Arguments to tile are
tile dimensions rather than divisors. Formally, tile on a
D0 �D1 � ...�Dn space is equivalent to div with divisors
D0
d0

, D1
d1

, ..., Dn
dn

. Figs. 5a and 5b show the same boxes created
using div and tile.
Mod. The mod operation shown in Fig. 5c is similar to div in
that it also takes a list of n divisors and creates

Qn�1
i=0 di child

boxes. However, mod’s child boxes are interleaved, not con-
tiguous. With mod, task (x0, x1, ..., xn) will be a member of
the child box ((x0 mod d0), (x1 mod d1), ..., (xn mod dn)).
Cut. The cut operation shown in Fig. 5d is a generalization
of div and mod. cut takes the same set of divisors as div
and mod, but it also takes a second list that specifies the man-
ner of slicing in each dimension. In the picture, we can clearly
see that cut creates contiguous slices along dimensions where
div is specified, but along the third dimension which uses
mod, the child boxes are interleaved.

C. Mapping
Partition trees in Rubik are used not only to specify groups

of tasks in a Cartesian application domain, but also to specify
groups of processors on the physical network. The tool is
designed to simplify the process of mapping tasks between
spaces with potentially different dimensionality. A fundamen-
tal example is that of mapping planes to boxes. Scientific
applications may perform collective operations within a plane
in the application domain, but mapping a plane directly onto
a 3D mesh network will not maximize the number of physical
links available for communication within the plane. Mapping

domain = box([4, 4, 4])
64

32 32

domain.tile([4, 4, 2])

Monday, February 11, 13

LLNL-PRES-605452 PAVE @ SC’12

Creating a partition tree

8

1 app = box([4,4,4])
2 app.div([2,1,4])

(a) div operation

1 app = box([4,4,4])
2 app.tile([2,4,1])

(b) tile operation

1 app = box([4,4,4])
2 app.mod([2,2,2])

(c) mod operation

1 app = box([4,4,4])
2 app.cut([2,2,2],
3 [div,div,mod])

(d) cut operation

Fig. 5: Partitioning operations in Rubik: div, tile, mod and cut

(a) One level (b) Two levels (c) Three levels

1 domain = box([4,4,4]) # a. Create a cube
2 domain.div([1,1,2]) # b. Divide into halves
3 for child in domain:
4 child.div([2,1,2]) # c. Divide each half into 4

Fig. 4: Incremental partition tree construction using the div operation

split this tree along the third dimension into two boxes of 32
tasks (Fig. 4b), which fully cover the original box. Lines 3 and
4 loop over the newly created children and further split each
child into 4 children of its own, with 8 tasks each (Fig. 4c).

The cubes at the top of Fig. 4 show the Cartesian structure
of the tree. Leaf nodes are nested in transparent halos of their
parent boxes. Each leaf box is given a unique color, and object
numbering (MPI rank) within each leaf box is shown using
a color gradient. The lowest rank within a leaf box has the
lightest color. The tree diagrams below the cubes show the
partition tree structure with boxes shown as nodes and labeled
by the number of tasks they contain.

B. Partitioning operations

The div operation used in the previous section is one
of four operations in Rubik that divide a box into children:
div, tile, mod and cut. Like the box constructor, these
operations can be used on an arbitrary number of dimensions.

Div. Section III-A showed two hierarchical divs to illustrate
the concept of the partition tree and Fig. 5a shows how we
can chop a 4 � 4 � 4 cube into 8 leaves of 8 objects each
using a single div. div takes a set of divisors d0, d1, ...dn
as argument, one for each dimension of the box it divides. It
slices the parent box into di groups along dimension i, creatingQn�1

i=0 di child boxes. The child boxes form a d0�d1�...�dn
space where the task at position (x0, x1, ..., xn) in the parent
box is in the child box with index (x0

d0
, x1
d1
, ..., xn

dn
).

Tile. While div divides a space into a fixed number number
of groups, tile divides a space into fixed-size child boxes,
or tiles. The number of tiles created depends on the size of
the box that tile is applied to. Arguments to tile are
tile dimensions rather than divisors. Formally, tile on a
D0 �D1 � ...�Dn space is equivalent to div with divisors
D0
d0

, D1
d1

, ..., Dn
dn

. Figs. 5a and 5b show the same boxes created
using div and tile.
Mod. The mod operation shown in Fig. 5c is similar to div in
that it also takes a list of n divisors and creates

Qn�1
i=0 di child

boxes. However, mod’s child boxes are interleaved, not con-
tiguous. With mod, task (x0, x1, ..., xn) will be a member of
the child box ((x0 mod d0), (x1 mod d1), ..., (xn mod dn)).
Cut. The cut operation shown in Fig. 5d is a generalization
of div and mod. cut takes the same set of divisors as div
and mod, but it also takes a second list that specifies the man-
ner of slicing in each dimension. In the picture, we can clearly
see that cut creates contiguous slices along dimensions where
div is specified, but along the third dimension which uses
mod, the child boxes are interleaved.

C. Mapping
Partition trees in Rubik are used not only to specify groups

of tasks in a Cartesian application domain, but also to specify
groups of processors on the physical network. The tool is
designed to simplify the process of mapping tasks between
spaces with potentially different dimensionality. A fundamen-
tal example is that of mapping planes to boxes. Scientific
applications may perform collective operations within a plane
in the application domain, but mapping a plane directly onto
a 3D mesh network will not maximize the number of physical
links available for communication within the plane. Mapping

1 app = box([4,4,4])
2 app.div([2,1,4])

(a) div operation

1 app = box([4,4,4])
2 app.tile([2,4,1])

(b) tile operation

1 app = box([4,4,4])
2 app.mod([2,2,2])

(c) mod operation

1 app = box([4,4,4])
2 app.cut([2,2,2],
3 [div,div,mod])

(d) cut operation

Fig. 5: Partitioning operations in Rubik: div, tile, mod and cut

(a) One level (b) Two levels (c) Three levels

1 domain = box([4,4,4]) # a. Create a cube
2 domain.div([1,1,2]) # b. Divide into halves
3 for child in domain:
4 child.div([2,1,2]) # c. Divide each half into 4

Fig. 4: Incremental partition tree construction using the div operation

split this tree along the third dimension into two boxes of 32
tasks (Fig. 4b), which fully cover the original box. Lines 3 and
4 loop over the newly created children and further split each
child into 4 children of its own, with 8 tasks each (Fig. 4c).

The cubes at the top of Fig. 4 show the Cartesian structure
of the tree. Leaf nodes are nested in transparent halos of their
parent boxes. Each leaf box is given a unique color, and object
numbering (MPI rank) within each leaf box is shown using
a color gradient. The lowest rank within a leaf box has the
lightest color. The tree diagrams below the cubes show the
partition tree structure with boxes shown as nodes and labeled
by the number of tasks they contain.

B. Partitioning operations

The div operation used in the previous section is one
of four operations in Rubik that divide a box into children:
div, tile, mod and cut. Like the box constructor, these
operations can be used on an arbitrary number of dimensions.

Div. Section III-A showed two hierarchical divs to illustrate
the concept of the partition tree and Fig. 5a shows how we
can chop a 4 � 4 � 4 cube into 8 leaves of 8 objects each
using a single div. div takes a set of divisors d0, d1, ...dn
as argument, one for each dimension of the box it divides. It
slices the parent box into di groups along dimension i, creatingQn�1

i=0 di child boxes. The child boxes form a d0�d1�...�dn
space where the task at position (x0, x1, ..., xn) in the parent
box is in the child box with index (x0

d0
, x1
d1
, ..., xn

dn
).

Tile. While div divides a space into a fixed number number
of groups, tile divides a space into fixed-size child boxes,
or tiles. The number of tiles created depends on the size of
the box that tile is applied to. Arguments to tile are
tile dimensions rather than divisors. Formally, tile on a
D0 �D1 � ...�Dn space is equivalent to div with divisors
D0
d0

, D1
d1

, ..., Dn
dn

. Figs. 5a and 5b show the same boxes created
using div and tile.
Mod. The mod operation shown in Fig. 5c is similar to div in
that it also takes a list of n divisors and creates

Qn�1
i=0 di child

boxes. However, mod’s child boxes are interleaved, not con-
tiguous. With mod, task (x0, x1, ..., xn) will be a member of
the child box ((x0 mod d0), (x1 mod d1), ..., (xn mod dn)).
Cut. The cut operation shown in Fig. 5d is a generalization
of div and mod. cut takes the same set of divisors as div
and mod, but it also takes a second list that specifies the man-
ner of slicing in each dimension. In the picture, we can clearly
see that cut creates contiguous slices along dimensions where
div is specified, but along the third dimension which uses
mod, the child boxes are interleaved.

C. Mapping
Partition trees in Rubik are used not only to specify groups

of tasks in a Cartesian application domain, but also to specify
groups of processors on the physical network. The tool is
designed to simplify the process of mapping tasks between
spaces with potentially different dimensionality. A fundamen-
tal example is that of mapping planes to boxes. Scientific
applications may perform collective operations within a plane
in the application domain, but mapping a plane directly onto
a 3D mesh network will not maximize the number of physical
links available for communication within the plane. Mapping

domain = box([4, 4, 4])
64

32 32

domain.tile([4, 4, 2])

for child in domain:

 child.tile([2, 4, 1])

Monday, February 11, 13

LLNL-PRES-605452 PAVE @ SC’12

Creating a partition tree

8

1 app = box([4,4,4])
2 app.div([2,1,4])

(a) div operation

1 app = box([4,4,4])
2 app.tile([2,4,1])

(b) tile operation

1 app = box([4,4,4])
2 app.mod([2,2,2])

(c) mod operation

1 app = box([4,4,4])
2 app.cut([2,2,2],
3 [div,div,mod])

(d) cut operation

Fig. 5: Partitioning operations in Rubik: div, tile, mod and cut

(a) One level (b) Two levels (c) Three levels

1 domain = box([4,4,4]) # a. Create a cube
2 domain.div([1,1,2]) # b. Divide into halves
3 for child in domain:
4 child.div([2,1,2]) # c. Divide each half into 4

Fig. 4: Incremental partition tree construction using the div operation

split this tree along the third dimension into two boxes of 32
tasks (Fig. 4b), which fully cover the original box. Lines 3 and
4 loop over the newly created children and further split each
child into 4 children of its own, with 8 tasks each (Fig. 4c).

The cubes at the top of Fig. 4 show the Cartesian structure
of the tree. Leaf nodes are nested in transparent halos of their
parent boxes. Each leaf box is given a unique color, and object
numbering (MPI rank) within each leaf box is shown using
a color gradient. The lowest rank within a leaf box has the
lightest color. The tree diagrams below the cubes show the
partition tree structure with boxes shown as nodes and labeled
by the number of tasks they contain.

B. Partitioning operations

The div operation used in the previous section is one
of four operations in Rubik that divide a box into children:
div, tile, mod and cut. Like the box constructor, these
operations can be used on an arbitrary number of dimensions.

Div. Section III-A showed two hierarchical divs to illustrate
the concept of the partition tree and Fig. 5a shows how we
can chop a 4 � 4 � 4 cube into 8 leaves of 8 objects each
using a single div. div takes a set of divisors d0, d1, ...dn
as argument, one for each dimension of the box it divides. It
slices the parent box into di groups along dimension i, creatingQn�1

i=0 di child boxes. The child boxes form a d0�d1�...�dn
space where the task at position (x0, x1, ..., xn) in the parent
box is in the child box with index (x0

d0
, x1
d1
, ..., xn

dn
).

Tile. While div divides a space into a fixed number number
of groups, tile divides a space into fixed-size child boxes,
or tiles. The number of tiles created depends on the size of
the box that tile is applied to. Arguments to tile are
tile dimensions rather than divisors. Formally, tile on a
D0 �D1 � ...�Dn space is equivalent to div with divisors
D0
d0

, D1
d1

, ..., Dn
dn

. Figs. 5a and 5b show the same boxes created
using div and tile.
Mod. The mod operation shown in Fig. 5c is similar to div in
that it also takes a list of n divisors and creates

Qn�1
i=0 di child

boxes. However, mod’s child boxes are interleaved, not con-
tiguous. With mod, task (x0, x1, ..., xn) will be a member of
the child box ((x0 mod d0), (x1 mod d1), ..., (xn mod dn)).
Cut. The cut operation shown in Fig. 5d is a generalization
of div and mod. cut takes the same set of divisors as div
and mod, but it also takes a second list that specifies the man-
ner of slicing in each dimension. In the picture, we can clearly
see that cut creates contiguous slices along dimensions where
div is specified, but along the third dimension which uses
mod, the child boxes are interleaved.

C. Mapping
Partition trees in Rubik are used not only to specify groups

of tasks in a Cartesian application domain, but also to specify
groups of processors on the physical network. The tool is
designed to simplify the process of mapping tasks between
spaces with potentially different dimensionality. A fundamen-
tal example is that of mapping planes to boxes. Scientific
applications may perform collective operations within a plane
in the application domain, but mapping a plane directly onto
a 3D mesh network will not maximize the number of physical
links available for communication within the plane. Mapping

1 app = box([4,4,4])
2 app.div([2,1,4])

(a) div operation

1 app = box([4,4,4])
2 app.tile([2,4,1])

(b) tile operation

1 app = box([4,4,4])
2 app.mod([2,2,2])

(c) mod operation

1 app = box([4,4,4])
2 app.cut([2,2,2],
3 [div,div,mod])

(d) cut operation

Fig. 5: Partitioning operations in Rubik: div, tile, mod and cut

(a) One level (b) Two levels (c) Three levels

1 domain = box([4,4,4]) # a. Create a cube
2 domain.div([1,1,2]) # b. Divide into halves
3 for child in domain:
4 child.div([2,1,2]) # c. Divide each half into 4

Fig. 4: Incremental partition tree construction using the div operation

split this tree along the third dimension into two boxes of 32
tasks (Fig. 4b), which fully cover the original box. Lines 3 and
4 loop over the newly created children and further split each
child into 4 children of its own, with 8 tasks each (Fig. 4c).

The cubes at the top of Fig. 4 show the Cartesian structure
of the tree. Leaf nodes are nested in transparent halos of their
parent boxes. Each leaf box is given a unique color, and object
numbering (MPI rank) within each leaf box is shown using
a color gradient. The lowest rank within a leaf box has the
lightest color. The tree diagrams below the cubes show the
partition tree structure with boxes shown as nodes and labeled
by the number of tasks they contain.

B. Partitioning operations

The div operation used in the previous section is one
of four operations in Rubik that divide a box into children:
div, tile, mod and cut. Like the box constructor, these
operations can be used on an arbitrary number of dimensions.

Div. Section III-A showed two hierarchical divs to illustrate
the concept of the partition tree and Fig. 5a shows how we
can chop a 4 � 4 � 4 cube into 8 leaves of 8 objects each
using a single div. div takes a set of divisors d0, d1, ...dn
as argument, one for each dimension of the box it divides. It
slices the parent box into di groups along dimension i, creatingQn�1

i=0 di child boxes. The child boxes form a d0�d1�...�dn
space where the task at position (x0, x1, ..., xn) in the parent
box is in the child box with index (x0

d0
, x1
d1
, ..., xn

dn
).

Tile. While div divides a space into a fixed number number
of groups, tile divides a space into fixed-size child boxes,
or tiles. The number of tiles created depends on the size of
the box that tile is applied to. Arguments to tile are
tile dimensions rather than divisors. Formally, tile on a
D0 �D1 � ...�Dn space is equivalent to div with divisors
D0
d0

, D1
d1

, ..., Dn
dn

. Figs. 5a and 5b show the same boxes created
using div and tile.
Mod. The mod operation shown in Fig. 5c is similar to div in
that it also takes a list of n divisors and creates

Qn�1
i=0 di child

boxes. However, mod’s child boxes are interleaved, not con-
tiguous. With mod, task (x0, x1, ..., xn) will be a member of
the child box ((x0 mod d0), (x1 mod d1), ..., (xn mod dn)).
Cut. The cut operation shown in Fig. 5d is a generalization
of div and mod. cut takes the same set of divisors as div
and mod, but it also takes a second list that specifies the man-
ner of slicing in each dimension. In the picture, we can clearly
see that cut creates contiguous slices along dimensions where
div is specified, but along the third dimension which uses
mod, the child boxes are interleaved.

C. Mapping
Partition trees in Rubik are used not only to specify groups

of tasks in a Cartesian application domain, but also to specify
groups of processors on the physical network. The tool is
designed to simplify the process of mapping tasks between
spaces with potentially different dimensionality. A fundamen-
tal example is that of mapping planes to boxes. Scientific
applications may perform collective operations within a plane
in the application domain, but mapping a plane directly onto
a 3D mesh network will not maximize the number of physical
links available for communication within the plane. Mapping

1 app = box([4,4,4])
2 app.div([2,1,4])

(a) div operation

1 app = box([4,4,4])
2 app.tile([2,4,1])

(b) tile operation

1 app = box([4,4,4])
2 app.mod([2,2,2])

(c) mod operation

1 app = box([4,4,4])
2 app.cut([2,2,2],
3 [div,div,mod])

(d) cut operation

Fig. 5: Partitioning operations in Rubik: div, tile, mod and cut

(a) One level (b) Two levels (c) Three levels

1 domain = box([4,4,4]) # a. Create a cube
2 domain.div([1,1,2]) # b. Divide into halves
3 for child in domain:
4 child.div([2,1,2]) # c. Divide each half into 4

Fig. 4: Incremental partition tree construction using the div operation

split this tree along the third dimension into two boxes of 32
tasks (Fig. 4b), which fully cover the original box. Lines 3 and
4 loop over the newly created children and further split each
child into 4 children of its own, with 8 tasks each (Fig. 4c).

The cubes at the top of Fig. 4 show the Cartesian structure
of the tree. Leaf nodes are nested in transparent halos of their
parent boxes. Each leaf box is given a unique color, and object
numbering (MPI rank) within each leaf box is shown using
a color gradient. The lowest rank within a leaf box has the
lightest color. The tree diagrams below the cubes show the
partition tree structure with boxes shown as nodes and labeled
by the number of tasks they contain.

B. Partitioning operations

The div operation used in the previous section is one
of four operations in Rubik that divide a box into children:
div, tile, mod and cut. Like the box constructor, these
operations can be used on an arbitrary number of dimensions.

Div. Section III-A showed two hierarchical divs to illustrate
the concept of the partition tree and Fig. 5a shows how we
can chop a 4 � 4 � 4 cube into 8 leaves of 8 objects each
using a single div. div takes a set of divisors d0, d1, ...dn
as argument, one for each dimension of the box it divides. It
slices the parent box into di groups along dimension i, creatingQn�1

i=0 di child boxes. The child boxes form a d0�d1�...�dn
space where the task at position (x0, x1, ..., xn) in the parent
box is in the child box with index (x0

d0
, x1
d1
, ..., xn

dn
).

Tile. While div divides a space into a fixed number number
of groups, tile divides a space into fixed-size child boxes,
or tiles. The number of tiles created depends on the size of
the box that tile is applied to. Arguments to tile are
tile dimensions rather than divisors. Formally, tile on a
D0 �D1 � ...�Dn space is equivalent to div with divisors
D0
d0

, D1
d1

, ..., Dn
dn

. Figs. 5a and 5b show the same boxes created
using div and tile.
Mod. The mod operation shown in Fig. 5c is similar to div in
that it also takes a list of n divisors and creates

Qn�1
i=0 di child

boxes. However, mod’s child boxes are interleaved, not con-
tiguous. With mod, task (x0, x1, ..., xn) will be a member of
the child box ((x0 mod d0), (x1 mod d1), ..., (xn mod dn)).
Cut. The cut operation shown in Fig. 5d is a generalization
of div and mod. cut takes the same set of divisors as div
and mod, but it also takes a second list that specifies the man-
ner of slicing in each dimension. In the picture, we can clearly
see that cut creates contiguous slices along dimensions where
div is specified, but along the third dimension which uses
mod, the child boxes are interleaved.

C. Mapping
Partition trees in Rubik are used not only to specify groups

of tasks in a Cartesian application domain, but also to specify
groups of processors on the physical network. The tool is
designed to simplify the process of mapping tasks between
spaces with potentially different dimensionality. A fundamen-
tal example is that of mapping planes to boxes. Scientific
applications may perform collective operations within a plane
in the application domain, but mapping a plane directly onto
a 3D mesh network will not maximize the number of physical
links available for communication within the plane. Mapping

domain = box([4, 4, 4])
64

32 32

domain.tile([4, 4, 2])

for child in domain:

 child.tile([2, 4, 1])

Monday, February 11, 13

LLNL-PRES-605452 PAVE @ SC’12

Creating a partition tree

8

1 app = box([4,4,4])
2 app.div([2,1,4])

(a) div operation

1 app = box([4,4,4])
2 app.tile([2,4,1])

(b) tile operation

1 app = box([4,4,4])
2 app.mod([2,2,2])

(c) mod operation

1 app = box([4,4,4])
2 app.cut([2,2,2],
3 [div,div,mod])

(d) cut operation

Fig. 5: Partitioning operations in Rubik: div, tile, mod and cut

(a) One level (b) Two levels (c) Three levels

1 domain = box([4,4,4]) # a. Create a cube
2 domain.div([1,1,2]) # b. Divide into halves
3 for child in domain:
4 child.div([2,1,2]) # c. Divide each half into 4

Fig. 4: Incremental partition tree construction using the div operation

split this tree along the third dimension into two boxes of 32
tasks (Fig. 4b), which fully cover the original box. Lines 3 and
4 loop over the newly created children and further split each
child into 4 children of its own, with 8 tasks each (Fig. 4c).

The cubes at the top of Fig. 4 show the Cartesian structure
of the tree. Leaf nodes are nested in transparent halos of their
parent boxes. Each leaf box is given a unique color, and object
numbering (MPI rank) within each leaf box is shown using
a color gradient. The lowest rank within a leaf box has the
lightest color. The tree diagrams below the cubes show the
partition tree structure with boxes shown as nodes and labeled
by the number of tasks they contain.

B. Partitioning operations

The div operation used in the previous section is one
of four operations in Rubik that divide a box into children:
div, tile, mod and cut. Like the box constructor, these
operations can be used on an arbitrary number of dimensions.

Div. Section III-A showed two hierarchical divs to illustrate
the concept of the partition tree and Fig. 5a shows how we
can chop a 4 � 4 � 4 cube into 8 leaves of 8 objects each
using a single div. div takes a set of divisors d0, d1, ...dn
as argument, one for each dimension of the box it divides. It
slices the parent box into di groups along dimension i, creatingQn�1

i=0 di child boxes. The child boxes form a d0�d1�...�dn
space where the task at position (x0, x1, ..., xn) in the parent
box is in the child box with index (x0

d0
, x1
d1
, ..., xn

dn
).

Tile. While div divides a space into a fixed number number
of groups, tile divides a space into fixed-size child boxes,
or tiles. The number of tiles created depends on the size of
the box that tile is applied to. Arguments to tile are
tile dimensions rather than divisors. Formally, tile on a
D0 �D1 � ...�Dn space is equivalent to div with divisors
D0
d0

, D1
d1

, ..., Dn
dn

. Figs. 5a and 5b show the same boxes created
using div and tile.
Mod. The mod operation shown in Fig. 5c is similar to div in
that it also takes a list of n divisors and creates

Qn�1
i=0 di child

boxes. However, mod’s child boxes are interleaved, not con-
tiguous. With mod, task (x0, x1, ..., xn) will be a member of
the child box ((x0 mod d0), (x1 mod d1), ..., (xn mod dn)).
Cut. The cut operation shown in Fig. 5d is a generalization
of div and mod. cut takes the same set of divisors as div
and mod, but it also takes a second list that specifies the man-
ner of slicing in each dimension. In the picture, we can clearly
see that cut creates contiguous slices along dimensions where
div is specified, but along the third dimension which uses
mod, the child boxes are interleaved.

C. Mapping
Partition trees in Rubik are used not only to specify groups

of tasks in a Cartesian application domain, but also to specify
groups of processors on the physical network. The tool is
designed to simplify the process of mapping tasks between
spaces with potentially different dimensionality. A fundamen-
tal example is that of mapping planes to boxes. Scientific
applications may perform collective operations within a plane
in the application domain, but mapping a plane directly onto
a 3D mesh network will not maximize the number of physical
links available for communication within the plane. Mapping

1 app = box([4,4,4])
2 app.div([2,1,4])

(a) div operation

1 app = box([4,4,4])
2 app.tile([2,4,1])

(b) tile operation

1 app = box([4,4,4])
2 app.mod([2,2,2])

(c) mod operation

1 app = box([4,4,4])
2 app.cut([2,2,2],
3 [div,div,mod])

(d) cut operation

Fig. 5: Partitioning operations in Rubik: div, tile, mod and cut

(a) One level (b) Two levels (c) Three levels

1 domain = box([4,4,4]) # a. Create a cube
2 domain.div([1,1,2]) # b. Divide into halves
3 for child in domain:
4 child.div([2,1,2]) # c. Divide each half into 4

Fig. 4: Incremental partition tree construction using the div operation

split this tree along the third dimension into two boxes of 32
tasks (Fig. 4b), which fully cover the original box. Lines 3 and
4 loop over the newly created children and further split each
child into 4 children of its own, with 8 tasks each (Fig. 4c).

The cubes at the top of Fig. 4 show the Cartesian structure
of the tree. Leaf nodes are nested in transparent halos of their
parent boxes. Each leaf box is given a unique color, and object
numbering (MPI rank) within each leaf box is shown using
a color gradient. The lowest rank within a leaf box has the
lightest color. The tree diagrams below the cubes show the
partition tree structure with boxes shown as nodes and labeled
by the number of tasks they contain.

B. Partitioning operations

The div operation used in the previous section is one
of four operations in Rubik that divide a box into children:
div, tile, mod and cut. Like the box constructor, these
operations can be used on an arbitrary number of dimensions.

Div. Section III-A showed two hierarchical divs to illustrate
the concept of the partition tree and Fig. 5a shows how we
can chop a 4 � 4 � 4 cube into 8 leaves of 8 objects each
using a single div. div takes a set of divisors d0, d1, ...dn
as argument, one for each dimension of the box it divides. It
slices the parent box into di groups along dimension i, creatingQn�1

i=0 di child boxes. The child boxes form a d0�d1�...�dn
space where the task at position (x0, x1, ..., xn) in the parent
box is in the child box with index (x0

d0
, x1
d1
, ..., xn

dn
).

Tile. While div divides a space into a fixed number number
of groups, tile divides a space into fixed-size child boxes,
or tiles. The number of tiles created depends on the size of
the box that tile is applied to. Arguments to tile are
tile dimensions rather than divisors. Formally, tile on a
D0 �D1 � ...�Dn space is equivalent to div with divisors
D0
d0

, D1
d1

, ..., Dn
dn

. Figs. 5a and 5b show the same boxes created
using div and tile.
Mod. The mod operation shown in Fig. 5c is similar to div in
that it also takes a list of n divisors and creates

Qn�1
i=0 di child

boxes. However, mod’s child boxes are interleaved, not con-
tiguous. With mod, task (x0, x1, ..., xn) will be a member of
the child box ((x0 mod d0), (x1 mod d1), ..., (xn mod dn)).
Cut. The cut operation shown in Fig. 5d is a generalization
of div and mod. cut takes the same set of divisors as div
and mod, but it also takes a second list that specifies the man-
ner of slicing in each dimension. In the picture, we can clearly
see that cut creates contiguous slices along dimensions where
div is specified, but along the third dimension which uses
mod, the child boxes are interleaved.

C. Mapping
Partition trees in Rubik are used not only to specify groups

of tasks in a Cartesian application domain, but also to specify
groups of processors on the physical network. The tool is
designed to simplify the process of mapping tasks between
spaces with potentially different dimensionality. A fundamen-
tal example is that of mapping planes to boxes. Scientific
applications may perform collective operations within a plane
in the application domain, but mapping a plane directly onto
a 3D mesh network will not maximize the number of physical
links available for communication within the plane. Mapping

1 app = box([4,4,4])
2 app.div([2,1,4])

(a) div operation

1 app = box([4,4,4])
2 app.tile([2,4,1])

(b) tile operation

1 app = box([4,4,4])
2 app.mod([2,2,2])

(c) mod operation

1 app = box([4,4,4])
2 app.cut([2,2,2],
3 [div,div,mod])

(d) cut operation

Fig. 5: Partitioning operations in Rubik: div, tile, mod and cut

(a) One level (b) Two levels (c) Three levels

1 domain = box([4,4,4]) # a. Create a cube
2 domain.div([1,1,2]) # b. Divide into halves
3 for child in domain:
4 child.div([2,1,2]) # c. Divide each half into 4

Fig. 4: Incremental partition tree construction using the div operation

split this tree along the third dimension into two boxes of 32
tasks (Fig. 4b), which fully cover the original box. Lines 3 and
4 loop over the newly created children and further split each
child into 4 children of its own, with 8 tasks each (Fig. 4c).

The cubes at the top of Fig. 4 show the Cartesian structure
of the tree. Leaf nodes are nested in transparent halos of their
parent boxes. Each leaf box is given a unique color, and object
numbering (MPI rank) within each leaf box is shown using
a color gradient. The lowest rank within a leaf box has the
lightest color. The tree diagrams below the cubes show the
partition tree structure with boxes shown as nodes and labeled
by the number of tasks they contain.

B. Partitioning operations

The div operation used in the previous section is one
of four operations in Rubik that divide a box into children:
div, tile, mod and cut. Like the box constructor, these
operations can be used on an arbitrary number of dimensions.

Div. Section III-A showed two hierarchical divs to illustrate
the concept of the partition tree and Fig. 5a shows how we
can chop a 4 � 4 � 4 cube into 8 leaves of 8 objects each
using a single div. div takes a set of divisors d0, d1, ...dn
as argument, one for each dimension of the box it divides. It
slices the parent box into di groups along dimension i, creatingQn�1

i=0 di child boxes. The child boxes form a d0�d1�...�dn
space where the task at position (x0, x1, ..., xn) in the parent
box is in the child box with index (x0

d0
, x1
d1
, ..., xn

dn
).

Tile. While div divides a space into a fixed number number
of groups, tile divides a space into fixed-size child boxes,
or tiles. The number of tiles created depends on the size of
the box that tile is applied to. Arguments to tile are
tile dimensions rather than divisors. Formally, tile on a
D0 �D1 � ...�Dn space is equivalent to div with divisors
D0
d0

, D1
d1

, ..., Dn
dn

. Figs. 5a and 5b show the same boxes created
using div and tile.
Mod. The mod operation shown in Fig. 5c is similar to div in
that it also takes a list of n divisors and creates

Qn�1
i=0 di child

boxes. However, mod’s child boxes are interleaved, not con-
tiguous. With mod, task (x0, x1, ..., xn) will be a member of
the child box ((x0 mod d0), (x1 mod d1), ..., (xn mod dn)).
Cut. The cut operation shown in Fig. 5d is a generalization
of div and mod. cut takes the same set of divisors as div
and mod, but it also takes a second list that specifies the man-
ner of slicing in each dimension. In the picture, we can clearly
see that cut creates contiguous slices along dimensions where
div is specified, but along the third dimension which uses
mod, the child boxes are interleaved.

C. Mapping
Partition trees in Rubik are used not only to specify groups

of tasks in a Cartesian application domain, but also to specify
groups of processors on the physical network. The tool is
designed to simplify the process of mapping tasks between
spaces with potentially different dimensionality. A fundamen-
tal example is that of mapping planes to boxes. Scientific
applications may perform collective operations within a plane
in the application domain, but mapping a plane directly onto
a 3D mesh network will not maximize the number of physical
links available for communication within the plane. Mapping

domain = box([4, 4, 4])
64

32 32

domain.tile([4, 4, 2])

for child in domain:

 child.tile([2, 4, 1])

8

8

8

8 88

8

8

Monday, February 11, 13

LLNL-PRES-605452 PAVE @ SC’12

Partitioning operations

9

app = box([4, 4, 4])
app.div([2, 1, 4])

Monday, February 11, 13

LLNL-PRES-605452 PAVE @ SC’12

Partitioning operations

9

app = box([4, 4, 4])
app.div([2, 1, 4])

app = box([4, 4, 4])
app.mod([2, 2, 2])

Monday, February 11, 13

LLNL-PRES-605452 PAVE @ SC’12

Partitioning operations

9

app = box([4, 4, 4])
app.div([2, 1, 4])

app = box([4, 4, 4])
app.mod([2, 2, 2])

app = box([4, 4, 4])
app.cut([2, 2, 2],
 [div, div, mod])

Monday, February 11, 13

LLNL-PRES-605452 PAVE @ SC’12

Permuting operations

10

Monday, February 11, 13

LLNL-PRES-605452 PAVE @ SC’12

Permuting operations

10

1 # Create app partition tree of 27-task planes
2 app = box([9,3,8])
3 app.tile([9,3,1])
4

5 # Create network partition tree of 27-processor
cubes

6 network = box([6,6,6])
7 network.tile([3,3,3])
8

9 network.map(app) # Map task planes into cubes

map()

=

app network

network with mapped
application ranks

216 216

27 27 27 27 27 27 27 2727 27 27 27 27 27 27 27

Fig. 6: Mapping a partition tree from the application to network domain using Rubik

(a) tilt(Z,*,*) (b) tilt(Z,X,*) (c) tilt(Z,Y,*) (d) zigzag(Z,X,*) (e) zigzag(Z,X,*)

Fig. 7: tilt and zigzag operations for the Z plane of a three-dimensional box (a). The first operand of both operations selects the planes to modify; the
second selects the directions along which increasing (tilt) or alternating (zigzag) shifts are applied.

the plane’s tasks to a higher dimensional space allows more
bandwidth to be exploited. Rubik makes this easy by facilitat-
ing mapping for arbitrary number of dimensions.

Fig. 6 shows two boxes of 216 objects subdivided into
eight 27-object groups. The first box’s children are planes,
and the second box’s children are cubes. Regardless of the
particular structure, the number of leaves in the two partition
trees is the same and each is of the same size. Such trees are
considered compatible. Two compatible trees can be mapped
by performing a simple breadth-first traversal of their leaves
and pairing off successive child boxes. The arrows in the figure
show these pairings for the example. For each pair, we take
the tasks in the child boxes in the application domain and copy
them into the corresponding boxes in the network domain.

The Rubik map operation reduces the burden of mapping
multi-dimensional spaces by allowing the user to think only
in terms of group sizes. The particular shapes of groups are
specified separately using the simple partitioning operations
discussed above. All that is required for a map is tree
compatibility. Indeed, despite their drastically different shapes,
map can be applied to any two partition trees shown in Fig. 5,
because their leaves are all the same size. They could also
be mapped to the tree in Fig. 4c, even though it has more
levels. These partitions could even be mapped to four- or five-
dimensional boxes, as long as their leaves are compatible.

D. Permuting operations

By default, the Rubik map operation copies ranks between
Cartesian spaces in scan-line order, with the highest-indexed
dimension varying fastest. While this is an intuitive default
order, a user may want to permute ranks within groups to
target bandwidth or latency optimizations. Rubik has several

operations that allow tasks to be permuted to exploit properties
of the physical network: tilt, zigzag, and zorder.

Tilt. The tilt operation can increase the number of links
available for messaging on nD Cartesian networks. Fig. 7b
and 7c show illustrations of two tilts applied to a 3D box.
Conceptually, tilt(op1,op2,op3) selects one hyperplane
(denoted by op1) and a direction (op2) along which an
increasing number (op3) of shifts are applied normal to the
direction of the hyperplane. Shifts are applied in a circular
fashion to all parallel hyperplanes resulting in a permutation
that “tilts” each hyperplane. Fig. 8 shows multiple, successive
applications of the tilt operation to a 4�4�4 box. On the left
is an untilted box, with tasks colored by identity (MPI rank)
from lightest to darkest. In the center, we see the same tasks
after permutation by one tilt, and on the right is the same box
after two tilts have been applied.

1 Z, Y, X = 0, 1, 2 # Assign names to dimensions
2 net = box([4,4,4]) # Create a box
3 net.tilt(Z, X, 1) # Tilt Z (XY) planes along X
4 net.tilt(X, Y, 1) # Tilt X (YZ) planes along Y

Fig. 8: Untilted, once-tilted, and twice-tilted 3D boxes

tilt uses the insights described in Section II to increase
the available links for communication between neighbor tasks

• Tilt

Monday, February 11, 13

LLNL-PRES-605452 PAVE @ SC’12

Permuting operations

10

• Zorder

1 # Create app partition tree of 27-task planes
2 app = box([9,3,8])
3 app.tile([9,3,1])
4

5 # Create network partition tree of 27-processor
cubes

6 network = box([6,6,6])
7 network.tile([3,3,3])
8

9 network.map(app) # Map task planes into cubes

map()

=

app network

network with mapped
application ranks

216 216

27 27 27 27 27 27 27 2727 27 27 27 27 27 27 27

Fig. 6: Mapping a partition tree from the application to network domain using Rubik

(a) tilt(Z,*,*) (b) tilt(Z,X,*) (c) tilt(Z,Y,*) (d) zigzag(Z,X,*) (e) zigzag(Z,X,*)

Fig. 7: tilt and zigzag operations for the Z plane of a three-dimensional box (a). The first operand of both operations selects the planes to modify; the
second selects the directions along which increasing (tilt) or alternating (zigzag) shifts are applied.

the plane’s tasks to a higher dimensional space allows more
bandwidth to be exploited. Rubik makes this easy by facilitat-
ing mapping for arbitrary number of dimensions.

Fig. 6 shows two boxes of 216 objects subdivided into
eight 27-object groups. The first box’s children are planes,
and the second box’s children are cubes. Regardless of the
particular structure, the number of leaves in the two partition
trees is the same and each is of the same size. Such trees are
considered compatible. Two compatible trees can be mapped
by performing a simple breadth-first traversal of their leaves
and pairing off successive child boxes. The arrows in the figure
show these pairings for the example. For each pair, we take
the tasks in the child boxes in the application domain and copy
them into the corresponding boxes in the network domain.

The Rubik map operation reduces the burden of mapping
multi-dimensional spaces by allowing the user to think only
in terms of group sizes. The particular shapes of groups are
specified separately using the simple partitioning operations
discussed above. All that is required for a map is tree
compatibility. Indeed, despite their drastically different shapes,
map can be applied to any two partition trees shown in Fig. 5,
because their leaves are all the same size. They could also
be mapped to the tree in Fig. 4c, even though it has more
levels. These partitions could even be mapped to four- or five-
dimensional boxes, as long as their leaves are compatible.

D. Permuting operations

By default, the Rubik map operation copies ranks between
Cartesian spaces in scan-line order, with the highest-indexed
dimension varying fastest. While this is an intuitive default
order, a user may want to permute ranks within groups to
target bandwidth or latency optimizations. Rubik has several

operations that allow tasks to be permuted to exploit properties
of the physical network: tilt, zigzag, and zorder.

Tilt. The tilt operation can increase the number of links
available for messaging on nD Cartesian networks. Fig. 7b
and 7c show illustrations of two tilts applied to a 3D box.
Conceptually, tilt(op1,op2,op3) selects one hyperplane
(denoted by op1) and a direction (op2) along which an
increasing number (op3) of shifts are applied normal to the
direction of the hyperplane. Shifts are applied in a circular
fashion to all parallel hyperplanes resulting in a permutation
that “tilts” each hyperplane. Fig. 8 shows multiple, successive
applications of the tilt operation to a 4�4�4 box. On the left
is an untilted box, with tasks colored by identity (MPI rank)
from lightest to darkest. In the center, we see the same tasks
after permutation by one tilt, and on the right is the same box
after two tilts have been applied.

1 Z, Y, X = 0, 1, 2 # Assign names to dimensions
2 net = box([4,4,4]) # Create a box
3 net.tilt(Z, X, 1) # Tilt Z (XY) planes along X
4 net.tilt(X, Y, 1) # Tilt X (YZ) planes along Y

Fig. 8: Untilted, once-tilted, and twice-tilted 3D boxes

tilt uses the insights described in Section II to increase
the available links for communication between neighbor tasks

• Tilt

Monday, February 11, 13

LLNL-PRES-605452 PAVE @ SC’12

Permuting operations

10

• Zorder

1 # Create app partition tree of 27-task planes
2 app = box([9,3,8])
3 app.tile([9,3,1])
4

5 # Create network partition tree of 27-processor
cubes

6 network = box([6,6,6])
7 network.tile([3,3,3])
8

9 network.map(app) # Map task planes into cubes

map()

=

app network

network with mapped
application ranks

216 216

27 27 27 27 27 27 27 2727 27 27 27 27 27 27 27

Fig. 6: Mapping a partition tree from the application to network domain using Rubik

(a) tilt(Z,*,*) (b) tilt(Z,X,*) (c) tilt(Z,Y,*) (d) zigzag(Z,X,*) (e) zigzag(Z,X,*)

Fig. 7: tilt and zigzag operations for the Z plane of a three-dimensional box (a). The first operand of both operations selects the planes to modify; the
second selects the directions along which increasing (tilt) or alternating (zigzag) shifts are applied.

the plane’s tasks to a higher dimensional space allows more
bandwidth to be exploited. Rubik makes this easy by facilitat-
ing mapping for arbitrary number of dimensions.

Fig. 6 shows two boxes of 216 objects subdivided into
eight 27-object groups. The first box’s children are planes,
and the second box’s children are cubes. Regardless of the
particular structure, the number of leaves in the two partition
trees is the same and each is of the same size. Such trees are
considered compatible. Two compatible trees can be mapped
by performing a simple breadth-first traversal of their leaves
and pairing off successive child boxes. The arrows in the figure
show these pairings for the example. For each pair, we take
the tasks in the child boxes in the application domain and copy
them into the corresponding boxes in the network domain.

The Rubik map operation reduces the burden of mapping
multi-dimensional spaces by allowing the user to think only
in terms of group sizes. The particular shapes of groups are
specified separately using the simple partitioning operations
discussed above. All that is required for a map is tree
compatibility. Indeed, despite their drastically different shapes,
map can be applied to any two partition trees shown in Fig. 5,
because their leaves are all the same size. They could also
be mapped to the tree in Fig. 4c, even though it has more
levels. These partitions could even be mapped to four- or five-
dimensional boxes, as long as their leaves are compatible.

D. Permuting operations

By default, the Rubik map operation copies ranks between
Cartesian spaces in scan-line order, with the highest-indexed
dimension varying fastest. While this is an intuitive default
order, a user may want to permute ranks within groups to
target bandwidth or latency optimizations. Rubik has several

operations that allow tasks to be permuted to exploit properties
of the physical network: tilt, zigzag, and zorder.

Tilt. The tilt operation can increase the number of links
available for messaging on nD Cartesian networks. Fig. 7b
and 7c show illustrations of two tilts applied to a 3D box.
Conceptually, tilt(op1,op2,op3) selects one hyperplane
(denoted by op1) and a direction (op2) along which an
increasing number (op3) of shifts are applied normal to the
direction of the hyperplane. Shifts are applied in a circular
fashion to all parallel hyperplanes resulting in a permutation
that “tilts” each hyperplane. Fig. 8 shows multiple, successive
applications of the tilt operation to a 4�4�4 box. On the left
is an untilted box, with tasks colored by identity (MPI rank)
from lightest to darkest. In the center, we see the same tasks
after permutation by one tilt, and on the right is the same box
after two tilts have been applied.

1 Z, Y, X = 0, 1, 2 # Assign names to dimensions
2 net = box([4,4,4]) # Create a box
3 net.tilt(Z, X, 1) # Tilt Z (XY) planes along X
4 net.tilt(X, Y, 1) # Tilt X (YZ) planes along Y

Fig. 8: Untilted, once-tilted, and twice-tilted 3D boxes

tilt uses the insights described in Section II to increase
the available links for communication between neighbor tasks

• Tilt

• Zigzag

Monday, February 11, 13

LLNL-PRES-605452 PAVE @ SC’12

Permuting operations

10

• Zorder

1 # Create app partition tree of 27-task planes
2 app = box([9,3,8])
3 app.tile([9,3,1])
4

5 # Create network partition tree of 27-processor
cubes

6 network = box([6,6,6])
7 network.tile([3,3,3])
8

9 network.map(app) # Map task planes into cubes

map()

=

app network

network with mapped
application ranks

216 216

27 27 27 27 27 27 27 2727 27 27 27 27 27 27 27

Fig. 6: Mapping a partition tree from the application to network domain using Rubik

(a) tilt(Z,*,*) (b) tilt(Z,X,*) (c) tilt(Z,Y,*) (d) zigzag(Z,X,*) (e) zigzag(Z,X,*)

Fig. 7: tilt and zigzag operations for the Z plane of a three-dimensional box (a). The first operand of both operations selects the planes to modify; the
second selects the directions along which increasing (tilt) or alternating (zigzag) shifts are applied.

the plane’s tasks to a higher dimensional space allows more
bandwidth to be exploited. Rubik makes this easy by facilitat-
ing mapping for arbitrary number of dimensions.

Fig. 6 shows two boxes of 216 objects subdivided into
eight 27-object groups. The first box’s children are planes,
and the second box’s children are cubes. Regardless of the
particular structure, the number of leaves in the two partition
trees is the same and each is of the same size. Such trees are
considered compatible. Two compatible trees can be mapped
by performing a simple breadth-first traversal of their leaves
and pairing off successive child boxes. The arrows in the figure
show these pairings for the example. For each pair, we take
the tasks in the child boxes in the application domain and copy
them into the corresponding boxes in the network domain.

The Rubik map operation reduces the burden of mapping
multi-dimensional spaces by allowing the user to think only
in terms of group sizes. The particular shapes of groups are
specified separately using the simple partitioning operations
discussed above. All that is required for a map is tree
compatibility. Indeed, despite their drastically different shapes,
map can be applied to any two partition trees shown in Fig. 5,
because their leaves are all the same size. They could also
be mapped to the tree in Fig. 4c, even though it has more
levels. These partitions could even be mapped to four- or five-
dimensional boxes, as long as their leaves are compatible.

D. Permuting operations

By default, the Rubik map operation copies ranks between
Cartesian spaces in scan-line order, with the highest-indexed
dimension varying fastest. While this is an intuitive default
order, a user may want to permute ranks within groups to
target bandwidth or latency optimizations. Rubik has several

operations that allow tasks to be permuted to exploit properties
of the physical network: tilt, zigzag, and zorder.

Tilt. The tilt operation can increase the number of links
available for messaging on nD Cartesian networks. Fig. 7b
and 7c show illustrations of two tilts applied to a 3D box.
Conceptually, tilt(op1,op2,op3) selects one hyperplane
(denoted by op1) and a direction (op2) along which an
increasing number (op3) of shifts are applied normal to the
direction of the hyperplane. Shifts are applied in a circular
fashion to all parallel hyperplanes resulting in a permutation
that “tilts” each hyperplane. Fig. 8 shows multiple, successive
applications of the tilt operation to a 4�4�4 box. On the left
is an untilted box, with tasks colored by identity (MPI rank)
from lightest to darkest. In the center, we see the same tasks
after permutation by one tilt, and on the right is the same box
after two tilts have been applied.

1 Z, Y, X = 0, 1, 2 # Assign names to dimensions
2 net = box([4,4,4]) # Create a box
3 net.tilt(Z, X, 1) # Tilt Z (XY) planes along X
4 net.tilt(X, Y, 1) # Tilt X (YZ) planes along Y

Fig. 8: Untilted, once-tilted, and twice-tilted 3D boxes

tilt uses the insights described in Section II to increase
the available links for communication between neighbor tasks

• Tilt

• Hierarchical Operations

• Zigzag

Monday, February 11, 13

LLNL-PRES-605452 PAVE @ SC’12

Application example

11

app = box([9,3,8]) # Create app partition tree of 27-task planes
app.tile([9,3,1])

network = box([6,6,6]) # Create network partition tree of 27-processor cubes
network.tile([3,3,3])

network.map(app) # Map task planes into cubes

1 # Create app partition tree of 27-task planes
2 app = box([9,3,8])
3 app.tile([9,3,1])
4

5 # Create network partition tree of 27-processor
cubes

6 network = box([6,6,6])
7 network.tile([3,3,3])
8

9 network.map(app) # Map task planes into cubes

map()

=

app network

network with mapped
application ranks

216 216

27 27 27 27 27 27 27 2727 27 27 27 27 27 27 27

Fig. 6: Mapping a partition tree from the application to network domain using Rubik

(a) tilt(Z,*,*) (b) tilt(Z,X,*) (c) tilt(Z,Y,*) (d) zigzag(Z,X,*) (e) zigzag(Z,X,*)

Fig. 7: tilt and zigzag operations for the Z plane of a three-dimensional box (a). The first operand of both operations selects the planes to modify; the
second selects the directions along which increasing (tilt) or alternating (zigzag) shifts are applied.

the plane’s tasks to a higher dimensional space allows more
bandwidth to be exploited. Rubik makes this easy by facilitat-
ing mapping for arbitrary number of dimensions.

Fig. 6 shows two boxes of 216 objects subdivided into
eight 27-object groups. The first box’s children are planes,
and the second box’s children are cubes. Regardless of the
particular structure, the number of leaves in the two partition
trees is the same and each is of the same size. Such trees are
considered compatible. Two compatible trees can be mapped
by performing a simple breadth-first traversal of their leaves
and pairing off successive child boxes. The arrows in the figure
show these pairings for the example. For each pair, we take
the tasks in the child boxes in the application domain and copy
them into the corresponding boxes in the network domain.

The Rubik map operation reduces the burden of mapping
multi-dimensional spaces by allowing the user to think only
in terms of group sizes. The particular shapes of groups are
specified separately using the simple partitioning operations
discussed above. All that is required for a map is tree
compatibility. Indeed, despite their drastically different shapes,
map can be applied to any two partition trees shown in Fig. 5,
because their leaves are all the same size. They could also
be mapped to the tree in Fig. 4c, even though it has more
levels. These partitions could even be mapped to four- or five-
dimensional boxes, as long as their leaves are compatible.

D. Permuting operations

By default, the Rubik map operation copies ranks between
Cartesian spaces in scan-line order, with the highest-indexed
dimension varying fastest. While this is an intuitive default
order, a user may want to permute ranks within groups to
target bandwidth or latency optimizations. Rubik has several

operations that allow tasks to be permuted to exploit properties
of the physical network: tilt, zigzag, and zorder.

Tilt. The tilt operation can increase the number of links
available for messaging on nD Cartesian networks. Fig. 7b
and 7c show illustrations of two tilts applied to a 3D box.
Conceptually, tilt(op1,op2,op3) selects one hyperplane
(denoted by op1) and a direction (op2) along which an
increasing number (op3) of shifts are applied normal to the
direction of the hyperplane. Shifts are applied in a circular
fashion to all parallel hyperplanes resulting in a permutation
that “tilts” each hyperplane. Fig. 8 shows multiple, successive
applications of the tilt operation to a 4�4�4 box. On the left
is an untilted box, with tasks colored by identity (MPI rank)
from lightest to darkest. In the center, we see the same tasks
after permutation by one tilt, and on the right is the same box
after two tilts have been applied.

1 Z, Y, X = 0, 1, 2 # Assign names to dimensions
2 net = box([4,4,4]) # Create a box
3 net.tilt(Z, X, 1) # Tilt Z (XY) planes along X
4 net.tilt(X, Y, 1) # Tilt X (YZ) planes along Y

Fig. 8: Untilted, once-tilted, and twice-tilted 3D boxes

tilt uses the insights described in Section II to increase
the available links for communication between neighbor tasks

Monday, February 11, 13

LLNL-PRES-605452 PAVE @ SC’12

Mapping pF3D
• A laser-plasma interaction code used at the

National Ignition Facility (NIF) at LLNL

• Three communication phases over a 3D virtual
topology:

• Wave propagation and coupling: 2D FFTs within XY planes

• Light advection: Send-recv between consecutive XY planes

• Hydrodynamic equations: 3D near-neighbor exchange

12

Monday, February 11, 13

LLNL-PRES-605452 PAVE @ SC’12

Mapping pF3D
• A laser-plasma interaction code used at the

National Ignition Facility (NIF) at LLNL

• Three communication phases over a 3D virtual
topology:

• Wave propagation and coupling: 2D FFTs within XY planes

• Light advection: Send-recv between consecutive XY planes

• Hydrodynamic equations: 3D near-neighbor exchange

12

Monday, February 11, 13

LLNL-PRES-605452 PAVE @ SC’12

Mapping pF3D
• A laser-plasma interaction code used at the

National Ignition Facility (NIF) at LLNL

• Three communication phases over a 3D virtual
topology:

• Wave propagation and coupling: 2D FFTs within XY planes

• Light advection: Send-recv between consecutive XY planes

• Hydrodynamic equations: 3D near-neighbor exchange

12

into nx columns and ny rows resulting in nx � ny � nz sub-
domains. Within each plane, rows and columns are arranged
into sub-communicators for the all-to-all’s discussed above.
For the test problem used in this paper, pF3D uses nx =
16, ny = 8 and nz is calculated according to the number of
processors available. In particular, for weak scaling the mesh
is refined along the Z-direction, adding more XY planes and
thus using more processors.

Table I lists the percentage of time spent in the top three
MPI routines in pF3D when running on 2,048 and 16,384
cores of BG/P. A significant amount of the time is spent in
MPI Send (communication between adjacent XY planes) and
in MPI Alltoall over X and Y sub-communicators. The point-
to-point messages are 320 and 480 KB in size whereas the
all-to-all messages are 20 KB in size. Therefore, if we can
map the XY planes such that we optimize the point-to-point
sends between the planes while simultaneously improving the
collective communication for the X and Y FFTs, we can
expect performance improvements.

2048 cores 16384 cores
MPI call Total % MPI % Total % MPI %

Send 4.90 28.45 23.10 57.21
Alltoall 8.10 46.94 7.30 18.07
Barrier 2.78 16.10 8.13 20.15

TABLE I: Breakdown of the time spent in different MPI calls for pF3D
running on 2,048 and 16,384 cores of Blue Gene/P (for the TXYZ mapping)

B. Baseline performance

To establish a baseline performance, we ran pF3D with the
default mapping on BG/P. The default mapping, referred to as
TXYZ, takes the MPI processes in rank order and assigns them
to cores within a node first (the T dimension), then moving
along the X direction of the torus, then Y , and finally the Z
direction. The times spent in computation and communication
are shown as a stacked bar chart in Fig. 10.

Fig. 10: Weak scaling performance of pF3D on Blue Gene/P for the default
TXYZ mapping

The trend suggests that as more processors are used, com-
munication takes up an increasing fraction of the total runtime,

culminating in 35% for 65,536 cores. For applications with
near-neighbor communication, the TXYZ mapping typically
represents a decent default as processes that are close in MPI
rank space are generally placed close on the torus network.
Further, since both the application domain as well as the
mapping are XYZ-ordered, while not optimal, it is a scalable
mapping. However, considering the results of Section II and
the large message sizes of pF3D’s point-to-point communica-
tions, a slightly higher latency in exchange for more effective
bandwidth may be beneficial. In the next section, we explore
mappings that aim at further improving the performance.

C. Mapping on 2,048 cores
Based on the understanding of the communication structure

of pF3D, one can use Rubik to generate mappings aimed at
optimizing both its point-to-point and collective communica-
tion. Here, we use mappings for 2048 cores (512 nodes) as
an example to explain the process of using Rubik as well as
to explore why certain mappings perform better than others.
At 2048 cores, the BG/P partition is a 8 � 8 � 8 torus with
four cores per node and the pF3D process grid is 16�8�16.
Following the discussion above, the goal is to place all MPI
processes within a pF3D plane close on the network. The
corresponding Rubik code (below) first tiles the application
domain (line 2) into 16�8 planes and the torus into 8�8�2
slabs (line 5) as shown below. In the rest of the paper, we
refer to this basic mapping as tiled. Subsequently, we tilt the
planes along the X (line 8) and Y (line 9) directions. These
mappings are referred to as tiltX and tiltXY respectively.

1 app = box([16, 8, 16])
2 app.tile([16, 8, 1])
3

4 torus = box([8, 8, 8, 4])
5 torus.tile([8, 8, 2, 1])
6

7 torus.map(app)
8 torus.tilt(Z, X, 1) # tilt XY planes along X
9 torus.tilt(Z, Y, 1) # tilt XY planes along Y

10

11 torus.write_map_file(f)

Fig. 11 shows the reduction in the time spent in the top
four MPI routines using each of the optimized mappings –
XYZT, tile, tiltX and tiltXY. The XYZT mapping reduces
the time spent in MPI Sends significantly because compared
to the TXYZ mapping, there is less contention for links
during message exchanges between pF3D planes. In the TXYZ
mapping, four cores on each node and also nodes with the
same X coordinate contend for Y direction links. This is
avoided in the XYZT mapping by spreading each pF3D plane
to two torus planes and hence using more links (in Z) for the
inter-plane communication. In the tiled mapping, four adjacent
pF3D planes are placed on the four cores of each node of two
adjacent XY -planes of the torus network. As shown in Fig. 11,
this provides a good and scalable mapping which outperforms
the XYZT mapping also. Inter-plane communication is now
confined within a node to the extent possible.

Monday, February 11, 13

LLNL-PRES-605452 PAVE @ SC’12

Default mapping

13

!"

!#""

!$""

!%""

!&""

!'""

!(""

!)""

!*""

!+""

$"&* &"+(*#+$ #(%*& %$)(* (''%(

,
-.
/!
0/
1!
-2/
13
2-4
5!
67
8

9:.;/1!4<!=41/7

>37/?-5/!0/1<41.35=/!4<!0@%A!45!>?:/!B/5/CD

E4.0:232-45
E4..:5-=32-45

Monday, February 11, 13

LLNL-PRES-605452 PAVE @ SC’12

Communication breakdown

14

!"

!#

!$"

!$#

!%"

&'() '()& *+,- *+,*' *+,*'(

&
+.
-!
/0
1

2344+56

78.439+085!8:!;+::-9-5*!.344+560!85!%<"=>!?89-0

@399+-9
A,,B*8B3,,
C-5;

D-?-+E-

Monday, February 11, 13

LLNL-PRES-605452 PAVE @ SC’12

Visualizing network traffic using
Boxfish

15

X

Y

Y

Z

Z

X

76M

2M

Fig. 12: Two-dimensional projections of the 3D torus network. Each column displays the network traffic along the three directions, X , Y and Z for five
mappings of pF3D on 512 nodes: TXYZ, XYZT, tile, tiltX, tiltXY

Fig. 11: Time spent in different MPI calls for five different mappings of a
16� 8� 16 pF3D grid to 512 nodes (2,048 cores) of Blue Gene/P

In the XYZT and tiled mappings, each all-to-all within the
pF3D planes uses only X or Y direction links and some Z
links on the network. To increase the number of potential
routes for the all-to-all sub-communicators, we therefore apply
either one tilt in X (referred to as tiltX) or a tilt in both X
and Y (referred to as tiltXY). Both mappings make links in the
Z direction of the torus available to the all-to-alls. The twice-
tilted tiltXY mapping reduces the time spent in both send-
receives and all-to-alls (by optimizing the intra- and inter-plane
communication). At 2048 cores, the communication is only
10% of the total execution time, hence the overall performance
improvements are not as significant. The iteration time for
the five mappings are 467.76, 429.22, 422.38, 420.580 and
417.095 seconds respectively.

To better understand the impact of mapping and routing on
the performance, we collected network counter data for all
links of the torus for the five mappings described above (see
Fig. 12). We use a novel projection of the 3D network topology

provided by Boxfish, an integrated performance analysis and
visualization tool we have developed [13]. Each image of
Fig. 12 shows all network links along two torus dimensions
aggregated into bundles along the third dimension.

It is easy to see that the first three mappings lead to under-
utilization of the Z links while the X and Y links are heavily
used. Another noticeable pattern is that the first three mappings
lead to uneven distribution of traffic on links in a particular
direction. This is less noticeable for the tiltX mapping even
though there does exist some unevenness in the Z direction.
The tiltXY mapping is able to homogenize the traffic for any
given direction. Even though this mapping seems to now over-
utilize Z links (compared to tiltX) it improves performance.

D. Mapping on 8,192 cores

Rubik facilitates the process of generating mappings for
structured communication patterns. Each mapping can be
generated using a few lines of Python code and they can
be scaled up easily to larger number of processors or higher
dimensions. In the process of writing this paper, we generated
more than two hundred mappings for pF3D using Rubik and
tested all of them on BG/P. Such an extensive exploration
would have been infeasible with mappings created by hand.
Generating efficient mappings by hand can be a significant
effort in terms of the time spent in designing the strategy,
writing a program that creates the mapping and debugging and
verifying that the logic is correct. Also, extending a mapping
for a 3D torus to a 5D torus can be non-trivial. Typically,
application developers will stop after finding the first custom
mapping that is ”good enough” because it is difficult and time-
consuming to generate mappings.

In Fig. 13, we present the results of twenty-five different
mappings that were used on 8,192 cores. The pF3D mesh

TXYZ XYZT tile tiltX tiltXY

Monday, February 11, 13

LLNL-PRES-605452 PAVE @ SC’12

Scaling performance of pF3D

16

!"

!#""

!$""

!%""

!&""

!'"""

#"$& $"(% &'(# '%)&$)#*%& %++)%

,
-.
/!
0/
1!
-2/
13
2-4
5!
67
8

9:.;/1!4<!=41/7

>?/=:2-45!2-./!<41!@-<</1/52!.300-5A7!4<!0B)C

,DEF
DEF,
)1@!G/72
#5@!G/72
G/72

Monday, February 11, 13

LLNL-PRES-605452 PAVE @ SC’12

Summary
• Lots of time and energy spent in communication

• Bandwidth can’t be optimized the same way as latency

• Rubik provides intuitive operations for quickly creating
optimized task mappings

• Close to 50% improvement for pF3D application

• Congestion and unstructured applications
are still open problems

17

Download Rubik!

http://github.com/tgamblin/rubik

Monday, February 11, 13

http://github.com/tgamblin/rubik
http://github.com/tgamblin/rubik

