
Computer Science 501
Data Structures & Algorithms
The College of Saint Rose

Fall 2015

Topic Notes: Generics

We saw in our examples using Vectors that the items stored within our Vectors are treated as

instances of class Object.

This is quite convenient in that we can store whatever type of objects we wish, and until version

1.4 of the Java Development Kit, this was the preferred approach.

This approach does have a few disadvantages:

1. When we retrieve an item from our Vector, we need to use a cast before we can treat it as

an instance of its own specific type.

2. If we make a programming error and mistakenly place an object of one type into the Vector

but then cast it to a different type upon retrieval, your program will crash with a runtime

error. Ideally, we would be able to detect such errors sooner – when we compile.

One approach to dealing with these disadvantages is to implement a specialized version of our

Vector (or whatever other) data structure that holds exactly the type of items we wish, much like

we can declare arrays of any type.

To implement, for example, a Vector that holds Integers (we could call it class IntegerVector),

we could take the Vector implementation, and instead of using Objects as the type for our in-

ternal array and for the method parameter and return types, we would use Integer.

This would take care of both disadvantages we noted in the original Vector implementation.

Casts are no longer needed because the return type of methods such as get would be Integer.

And perhaps more importantly, if we attempted to write code that stored anything other than an

Integer (or a subclass of Integer), the Java compiler would flag the error (a compile-time

error), which is much more convenient time to detect an error than at run time

But unfortunately, this “solution” means writing a brand new specialized Vector-like class for

each data type we need to store.

Starting with JDK 1.5 (Java 5), Java was extended to allow class definitions to include generic,

or parameterized data types. This means that we can write a definition of the structure using data

types that are unspecified (much like the value of a method parameter is unspecified) until we

create an instance of the class.

We can see generic versions of Association and Vector in use:

See Example:

/home/cs501/examples/Spells/SpellsVectorT.java See Example:

/home/cs501/examples/PocketChange/PocketChangeT.java:



CSC 501 Data Structures and Algorithm Analysis Fall 2015

As you can see in the examples, we specify the data type of the items we will be storing in the

generic data structure in angle brackets after the structure type. For example, the Vector of

Integer:

Vector<Integer> intVec = new Vector<Integer>();

With this declaration, any attempt to store an item which is not of type Integer or any treatment

of an item retrieved as a non-Integer type will result in a compile-time error.

The generic data types, including Vector and Association are provided in the bailey.jar

library, but you will need to import structure5.*; instead of import structure.*;

at the top of your program.

Note: we would like to be able to use a primitive type as a type parameter:

Vector<int> intVec = new Vector<int>();

but this is not permitted – the type parameters must be object types. Fortunately, with autoboxing,

this is not much of an inconvenience to programmers.

From here on, we will make use of the generic classes.

Generic Association Implementation

See Structure Source:

/home/cs501/src/structure5/Association.java

In the Association class, we in fact make use of two type parameters, one for the key and

one for the value. Rather than treating both as Objects as in the non-generic Association

implementation, we use K for the type of the key and V for the type of the value.

Everywhere we refer to the key and value in type declarations for variables, parameters, or return

types, we can use K and V, respectively.

The rest of the code for the class remains unchanges from the non-generic Association.

Generic Vector Implementation

The generic Vector class is parameterized on the type of the items (elements) it will contain. The

implementation uses E as the type.

For the most part, the Vector implementation is straightforward. However, a technical problem

comes into play when we declare the Vector’s internal array. This is not something we will

concern ourselves with at this point, but the description of the problem and of its solution within

structure is worth reading in the text.

2


