
Computer Science 501
Data Structures & Algorithms
The College of Saint Rose

Fall 2015

Topic Notes: Complexity and Asymptotic Analysis

Consider the abstract data type, the Vector or ArrayList. This structure affords us the oppor-

tunity to look at important efficiency issues before moving on to more complicated and interesting

structures and the algorithms that use them.

Consider these observations:

• A programmer can use a Vector/ArrayList in contexts where an array could be used.

• The Vector/ArrayList hides some of the complexity associated with inserting or re-

moving values from the middle of the array, or when the array needs to be resized.

• As a user of a Vector/ArrayList, these potentially expensive operations all seem very

simple – it’s just a method call.

• But.. programmers who make use of abstract data types need to be aware of the actual costs

of the operations and their effect on their program’s efficiency.

We will now spend some time looking at how Computer Scientists measure the costs associated

with our structures and the operations on those structures.

Costs of Vector/ArrayList Operations

When considering Vector/ArrayList implementations, we considered two ways to “grow”

Vector/ArrayLists that need to be expanded to accomodate new items.

• When growing by 1 at a time, we saw that to add n items, we would have to copy n ∗ n−1
2

items between copies of the array inside the Vector/ArrayList implementation.

• When we doubled the size of the array each time it needed to be expanded, we would have

to copy a total of n− 1 items.

These kinds of differences relate to the tradeoffs made when developing algorithms and data struc-

tures. We could avoid all of these copies by just allocating a huge array, larger than we could ever

possibly need, right at the start. That would be very efficient in terms of avoiding the work of

copying the contents of the array, but it is very inefficient in terms of memory usage.

This is an example of a time vs. space tradeoff . We can save some time (do less computing) by

using more space (less memory). Or vice versa.

CSC 501 Data Structures and Algorithm Analysis Fall 2015

We also observe that the cost to add an element to a Vector/ArrayList is not constant! Usu-

ally it is – when the Vector/ArrayList is already big enough – but in those cases where the

Vector/ArrayList has to be expanded, it involves copying over all of the elements already in

the Vector before adding the new one. This cost will depend on the number of elements in the

Vector/ArrayList at the time.

The cost of inserting or removing an element from the middle or beginning of a Vector/ArrayList

always depends on how many elements are in the Vector/ArrayList after the insert/remove

point.

Asymptotic Analysis

We want to focus on how Computer Scientists think about the differences among the costs of

various operations.

There are many ways that we can think about the “cost” of a particular computation. The most

important of which are

• computational cost: how many basic operations of some kind does it take to accomplish

what we are trying to do?

– If we are copying the elements of one array to another, we might count the number of

elements we need to copy.

– In other examples, we may wish to count the number of times a key operation, such as

a multiplication statement, takes place.

– We can estimate running time for a problem of size n, T (n), by multiplying the execu-

tion time of our basic operation, cop, by the number of basic operations, C(n):

T (n) ≈ copC(n)

• space cost: how much memory do we need to use?

– may be the number of bytes, words, or some unit of data stored in a structure

The operations we’ll want to count tend to be those that happen inside of loops, or more signifi-

cantly, inside of nested loops.

Finding the “Trends”

Determining an exact count of operations might be useful in some circumstances, but we usually

want to look at the trends of the operation costs as we deal with larger and larger problem sizes.

This allows us to compare algorithms or structures in a general but very meaningful way without

looking at the relatively insignificant details of an implementation or worrying about characteristics

of the machine we wish to run on.

2

CSC 501 Data Structures and Algorithm Analysis Fall 2015

To do this, we ignore differences in the counts which are constant and look at an overall trend as

the size of the problem is increased.

For example, we’ll treat n and n
2

as being essentially the same.

Similarly, 1
1000

n2, 2n2 and 1000n2 are all “pretty much” n2.

With more complex expressions, we also say that only the most significant term (the one with the

largest exponent) is important when we have different parts of the computation taking different

amounts of work or space. So if an algorithm uses n + n2 operations, as n gets large, the n2 term

dominates and we ignore the n.

In general if we have a polynomial of the form a0n
k + a1n

k−1 + ... + ak, say it is “pretty much”

nk. We only consider the most significant term.

Defining “Big O” Formally

We formalize this idea of “pretty much” using asymptotic analysis:

Definition: A function f(n) ∈ O(g(n)) if and only if there exist two positive constants c and n0

such that |f(n)| ≤ c · g(n) for all n > n0.

Equivalently, we can say that f(n) ∈ O(g(n)) if there is a constant c such that for all sufficiently

large n, |f(n)
g(n)

| ≤ c.

To satisfy these definitions, we can always choose a really huge g(n), perhaps nnn

, but as a rule,

we want a g(n) without any constant factor, and as “small” of a function as we can.

So if both g(n) = n and g(n) = n2 are valid choices, we choose g(n) = n. We can think of

g(n) as an upper bound (within a constant factor) in the long-term behavior of f(n), and in this

example, n is a “tighter bound” than n2.

We also don’t care how big the constant is and how big n0 has to be. Well, at least not when

determining the complexity. We would care about those in specific cases when it comes to imple-

mentation or choosing among existing implementations, where we may know that n is not going

to be very large in practice, or when c has to be huge. But for our theoretical analysis, we don’t

care. We’re interested in relative rates of growth of functions.

Common Orders of Growth

The most common orders of growth or orders of complexity are

• O(1) – for any constant-time operations, such as the assignment of an element in an array.

The cost doesn’t depend on the size of the array or the position we’re setting.

• O(log n) – logarithmic factors tend to come into play in “divide and conquer” algorithms.

Example: binary search in an ordered array of n elements.

• O(n) – linear dependence on the size. This is very common, and examples include the

insertion of a new element at the beginning of an array containing n elements.

3

CSC 501 Data Structures and Algorithm Analysis Fall 2015

• O(n log n) – this is just a little bigger than O(n), but definitely bigger. The most famous

examples are divide and conquer sorting algorithms, which we will look at soon.

• O(n2) – quadratic. Most naive sorting algorithms are O(n2). Doubly-nested loops often

lead to this behavior. Example: matrix-matrix addition for n× n matrices.

• O(n3) – cubic complexity. Triply nested loops will lead to this behavior. A good example is

“naive” matrix-matrix multiplication. We need to do n operations (a dot product) on each of

n2 matrix entries.

• O(nk), for constant k – polynomial complexity. As k grows, the cost of these kinds of

algorithms grows very quickly.

Computer Scientists are actually very excited to find polynomial time algorithms for seem-

ingly very difficult problems. In fact, there is a whole class of problems (NP) for which if

you could either come up with a polynomial time algorithm, no matter how big k is (as long

as it’s constant), or if you could prove that no such algorithm exists, you would instantly be

world famous! At least among us Computer Scientists. We will likely introduce the idea of

NP and NP-Completeness later this semester.

• O(2n) – exponential complexity. Recursive solutions where we are searching for some “best

possible” solution often leads to an exponential algorithm. Constructing a “power set” from

a set of n elements requires O(2n) work. Checking topological equivalence of circuits is one

example of a problem with exponential complexity.

• O(n!) – factorial complexity. This gets pretty huge very quickly. We are already considering

one example on the first problem set: traversing all permutations of an n-element set.

• O(nn) – even more huge

Suppose we have operations with time complexity O(log n), O(n), O(n log n), O(n2), and O(2n).

And suppose the time to solve a problem of size n is t. How much time to do problem 10, 100, or

1000 times larger?

Time to Solve Problem

size n 10n 100n 1000n

O(1) t t t t
O(log n) t > 3t ∼ 6.5t < 10t
O(n) t 10t 100t 1, 000t
O(n log n) t > 30t ∼ 650t < 10, 000t
O(n2) t 100t 10, 000t 1, 000, 000t
O(2n) t ∼ t10 ∼ t100 ∼ t1000

Note that the last line depends on the fact that the constant is 1, otherwise the times are somewhat

different.

4

CSC 501 Data Structures and Algorithm Analysis Fall 2015

See Example:

/home/cs501/examples/EfficiencyClasses/RunTimes.java

Now let’s think about complexity from a different perspective.

Suppose we get a faster computer, 10, 100, or 1000 times faster than the one we had, or we’re

willing to wait 10, 100, or 1000 times longer to get our solution if we can solve a larger problem.

How much larger problems can be solved? If original machine allowed solution of problem of size

k in time t, then how big a problem can be solved in some multiple of t?

Problem Size

speed-up 1x 10x 100x 1000x

O(log n) k k10 k100 k1000

O(n) k 10k 100k 1, 000k
O(n log n) k < 10k < 100k < 1, 000k
O(n2) k 3k+ 10k 30k+
O(2n) k k + 3 k + 7 k + 10

For an algorithm which works in O(1), the table makes no sense - we can solve as large a problem

as we like in the same amount of time. The speed doesn’t make it any more likely that we can

solve a larger problem.

See Example:

/home/cs501/examples/EfficiencyClasses/ProblemSizes.java

Examples

• Filling in a difference table, addition table, multiplication table, etc., O(n2)

• Inserting n elements into a Java Vector or ArrayList using default add, O(n)

• Inserting n elements into a Java Vector or ArrayList using add at position 0, O(n2)

Some algorithms will have varying complexities depending on the specific input. So we can con-

sider three types of analysis:

• Best case: how fast can an instance be if we get really lucky?

– find an item in the first place we look in a search – O(1)

– get presented with already-sorted input in certain sorting procedures – O(n)

– we don’t have to expand a Vector or ArrayList when adding an element at the

end – O(1)

• Worst case: how slow can an instance be if we get really unlucky?

5

CSC 501 Data Structures and Algorithm Analysis Fall 2015

– find an item in the last place in a linear search – O(n)

– get presented with a reverse-sorted input in certain sorting procedures – O(n2)

– we have to expand a Vector or ArrayList to add an element – O(n)

• Average case: how will we do on average?

– linear search – equal chance to find it at each spot or not at all – O(n)

– get presented with reasonably random input to certain sorting procedures – O(n log n)

– we have to expand a Vector/ArrayList sometimes, complexity depends on how

we resize and the pattern of additions

Important note: this is not the average of the best and worst cases!

Basic Efficiency Classes

Big O is only one of three asymptotic notations we will use.

Informally, the three can be thought of as follows:

• O(g(n)) is set of all functions that grow at the same rate as or slower than g(n).

• Ω(g(n)) is set of all functions that grow at the same rate as or faster than g(n).

• Θ(g(n)) is set of all functions that grow at the same rate as g(n).

We previously gave the formal definition of O(g(n)):

Definition: A function f(n) ∈ O(g(n)) if and only if there exist two positive constants c and n0

such that |f(n)| ≤ c · g(n) for all n > n0.

Now, let’s see/remember how we can use this definition to prove that a function is in a particular

efficiency class.

Let’s show that

500n+ 97 ∈ O(n2)

by finding appropriate constants c and n0 to match the definition.

Since all we need to do is to produce any pair of constants to meet the requirement, we have a

great deal of freedom in selecting our constants. We could select very large constants that would

satisfy the definition. But we will attempt to obtain some fairly small (“tight”) constants.

Note that

500n+ 97 ≤ 500n+ n

for n ≥ 97. And

500n+ n = 501n ≤ 501n2

6

CSC 501 Data Structures and Algorithm Analysis Fall 2015

indicating that we can use c = 501.

So, c = 501 and n0 = 97 will work.

Alternately, we could notice that

500n+ 97 ≤ 500n+ 97n

for n ≥ 1. And

500n+ 97n = 597n ≤ 597n2

indicating a value of c = 597 to go with n0 = 1.

Similar arguments work for other polynomials.

To show that

27n3 + 12n2 + 25000 ∈ O(n3)

We can proceed as follows:

27n3 + 12n2 + 25000 ≤ 27n3 + 12n2 + n

for n ≥ 250000. And

27n3 + 12n2 + n ≤ 27n3 + 12n3 + n3 = 40n3

So we can use c = 40 and n0 = 25000 to satisfy the definition, showing that 27n3+12n2+25000 ∈
O(n3).

Next, let’s work toward a more general result:

an2 + bn+ d ∈ O(n2)

for positive constants a, b, d.

We proceed by noting that

an2 + bn+ d ≤ an2 + bn+ n

for n > d, and

an2 + bn+ n = an2 + (b+ 1)n ≤ an2 + n2

for n > b+ 1, and

an2 + n2 = (a+ 1)n2

which leads us to constants of c = a+ 1 and n0 = max(d, b+ 1).

Next, we consider the formal definitions of Ω and Θ.

Definition: A function f(n) ∈ Ω(g(n)) if and only if there exist two positive constants c and n0

such that |f(n)| ≥ c · g(n) for all n > n0.

Definition: A function f(n) ∈ Θ(g(n)) if and only if there exist three positive constants c1, c2, and

n0 such that c2 · g(n) ≤ |f(n)| ≤ c1 · g(n) for all n > n0.

7

CSC 501 Data Structures and Algorithm Analysis Fall 2015

Similar techniques can be used to prove membership of a function in these classes.

To show that 15n2 + 37 ∈ Ω(n), we need to show a lower bound instead of an upper bound as

we did for Big-O proofs. So instead of making our function larger to help make progress, we can

make our function smaller.

15n2 + 37 ≥ 15n2 ≥ 15n

where the latter inequality holds for any n ≥ 1. So we can choose n0 = 1 and c = 15 to satisfy the

definition.

To show that 1
2
n(n− 1) ∈ Θ(n2), we need to show both the upper and lower bounds hold.

1

2
n(n− 1) =

1

2
n2 − 1

2
n ≤ 1

2
n2

for n ≥ 0. So for the right inequality (the upper bound), we can choose c1 =
1
2

and n0 = 0.

To prove the left inequality, we can observe that

1

2
n(n− 1) =

1

2
n2 − 1

2
n ≥ 1

2
n2 − 1

2
n
1

2
n

when n ≥ 2, and
1

2
n2 − 1

2
n
1

2
n =

1

2
n2 − 1

4
n2 =

1

4
n2

So for the lower bound, we can choose c2 =
1
4

but we need n0 = 2. This gives us, overall, c2 =
1
4
,

c1 =
1
2
, and n0 = 2.

Some Useful Properties

As we work with these asympotic notations, the following properties will often prove useful. We

will not prove them formally, but convince yourself that these hold (and use them as needed!).

• f(n) ∈ O(f(n))

• f(n) ∈ O(g(n)) iff g(n) ∈ Ω(f(n))

• If f(n) ∈ O(g(n)) and g(n) ∈ O(h(n)), then f(n) ∈ O(h(n))

• If f1(n) ∈ O(g1(n)) and f2(n) ∈ O(g2(n)), then f1(n) + f2(n) ∈ O(max{g1(n), g2(n)})

Using Limits

A powerful means of comparing the orders of growth of functions involves the use of limits. In

particular, we can compare functions f(n) and g(n) by computing the limit of their ratio:

8

CSC 501 Data Structures and Algorithm Analysis Fall 2015

lim
n→∞

f(n)

g(n)

Three cases commonly arise:

• 0: f(n) has a smaller order of growth than g(n), i.e., f(n) ∈ O(g(n)).

• c > 0: f(n) has the same order of growth as g(n), i.e., f(n) ∈ Θ(g(n)).

• ∞: f(n) has a larger order of growth than g(n), i.e., f(n) ∈ Ω(g(n)).

Two rules that often come in handy when using this technique:

L’Hôpital’s Rule states

lim
n→∞

t(n)

g(n)
= lim

n→∞

t′(n)

g′(n)

and Stirling’s formula states

n! ≈
√
2πn

(n

e

)n

for large values of n.

Let’s consider some examples:

1. Compare f(n) = 20n2 + n+ 4 and g(n) = n3.

lim
n→∞

20n2 + n+ 4

n3
= lim

n→∞

[

20n2

n3
+

n

n3
+

4

n3

]

= lim
n→∞

[

20

n
+

1

n2
+

4

n3

]

= 0 + 0 + 0 = 0

so f has a slower growth than g, f(n) ∈ O(g(n)).

2. Compare f(n) = n2 and g(n) = n2 − n.

lim
n→∞

n2

n2 − n
= lim

n→∞

n

n− 1
= 1

so f and g have the same growth rate.

9

CSC 501 Data Structures and Algorithm Analysis Fall 2015

3. Compare f(n) = 2log n and g(n) = n2.

lim
n→∞

2log n

n2
= lim

n→∞

nlog 2

n2
= lim

n→∞

n

n2
= lim

n→∞

1

n
= 0.

so n2 grows faster.

4. Compare f(n) = log(n3) and g(n) = log(n4).

lim
n→∞

log(n3)

log(n4)
= lim

n→∞

3 log(n)

4 log(n)
=

3

4

so these grow at the same rate.

5. Compare f(n) = log2(n) and g(n) = n.

lim
n→∞

log2(n)

n
= lim

n→∞

1
n ln 2

1
= 0

so n grows faster (as we know anyway).

Analyzing Nonrecursive Algorithms

We will next look at how to analyze non-recursive algorithms.

Our general approach involves these steps:

1. Determine the parameter that indicates the input size, n.

2. Identify the basic operation.

3. Determine the worst, average, and best cases for inputs of size n.

4. Specify a sum for the number of basic operation executions.

5. Simplify the sum

Example 1: Finding the Maximum Element

Our first algorithm to analyze is one to search for the maximum element in an array.

max_element(A[0..n-1])

maxval = A[0]

for (i=1 to n-1)

if (A[i] > maxval) maxval = A[i]

return maxval;

10

CSC 501 Data Structures and Algorithm Analysis Fall 2015

The input size parameter is n, the number of elements in the array.

The basic operation could be the comparison or the assignment in the for loop. We choose the

comparison since it executes on every loop iteration.

Since this basic operation executes every time through the loop regardless of the input, the best,

average, and worst cases will all be the same.

We will denote the number of comparisons as C(n). There is one comparison in each iteration of

the loop, so we can (overly formally) specify the total as:

C(n) =
n−1
∑

i=1

1 = n− 1 ∈ Θ(n).

Example 2: Element Uniqueness Problem

Our next example algorithm is one that determines whether all of the elements in a given array are

distinct.

unique_elements(A[0..n-1])

for (i=0 to n-2)

for (j=i+1 to n-1)

if (A[i] == A[j]) return false

return true

Again, the input size parameter n is the number of elements in the array.

The basic operation is the comparison in the body of the inner loop.

The number of times this comparison executes depends on whether and how quickly a matching

pair is located. The best case is that A[0] and A[1] are equal, resulting in a single comparison.

The average case depends on the expected inputs and how likely matches are. We do not have

enough information to analyze this formally. So we will focus on the worst case, which occurs

when there is no match and all loops execute the maximum number of times.

How many times will the comparison occur in this case? The outer loop executes n− 1 times. For

the first execution of the inner loop, the comparison executes n−2 times. The second time around,

we do n− 3 comparisons. And so on until the last iteration that executes just once.

So we compute our worst case number of comparisons:

11

CSC 501 Data Structures and Algorithm Analysis Fall 2015

C(n) =
n−2
∑

i=0

n−1
∑

j=i+1

1

=
n−2
∑

i=0

[(n− 1)− (i+ 1) + 1]

=
n−2
∑

i=0

(n− 1− i)

=
n−2
∑

i=0

(n− 1)−
n−2
∑

i=0

i

From here, we can factor out the (n−1) from the first summation and apply the second summation

rule from Levitin p. 476 to the second summation to obtain:

C(n) = (n− 1)
n−2
∑

i=0

1− (n− 2)(n− 1)

2

= (n− 1)2 − (n− 2)(n− 1)

2
=

2(n− 1)2

2
− (n− 2)(n− 1)

2

=
n(n− 1)

2
∈ Θ(n2).

This isn’t surprising at all, if we think about what the loops are doing.

Example 3: Matrix Multiplication

Recall the algorithm for multiplying two n× n matrices:

matmult(A[0..n-1][0..n-1],B[0..n-1][0..n-1])

for (i=0 to n-1)

for (j=0 to n-1)

C[i][j] = 0

for (k=0 to n-1)

C[i][j] += A[i][k]*B[k][j]

return C

The input size is measured by n, the order of the matrix.

The basic operation could be the multiplication or the addition in the innermost loop. Generally,

we would choose the multiplication (it’s often a more expensive operation), but since they both

12

CSC 501 Data Structures and Algorithm Analysis Fall 2015

happen the same number of times, it doesn’t matter which we pick. We just want to count the

number of times that line executes.

The best, average, and worst case behavior are identical: the loops all need to execute to comple-

tion.

So we’re ready to set up our summation for the number of multiplications:

M(n) =
n−1
∑

i=0

n−1
∑

j=0

n−1
∑

k=0

1 =
n−1
∑

i=0

n−1
∑

j=0

n =
n−1
∑

i=0

n2 = n3.

We can go a step further and estimate a running time, if the cost of a multiplication on a given

machine is cm.

T (n) ≈ cmM(n) = cmn
3.

And this can be extended to include additions (where each of A(n) additions costs ca.

T (n) ≈ cmM(n) + caA(n) = cmn
3 + can

3 = (cm + ca)n
3.

This is just a constant multiple of n3.

Example 4: Number of Binary Digits Needed for a Number

We next consider a very different example, an algorithm to determine how many bits are needed to

represent a positive integer in binary.

binary(n)

count = 1

while (n > 1)

count++

n = floor(n/2)

return count

Our summation techniques will not work here – while this is not a recursive algorithm, the approach

here will involve recurrence relations, which are usually applied to recursive algorithm analysis.

So we delay our answer to this one until we have seen the appropriate techniques.

Analyzing Recursive Algorithms

13

CSC 501 Data Structures and Algorithm Analysis Fall 2015

Our approach to the analysis of recursive algorithms differs somewhat. The first three steps are the

same: determining the input size parameter, identifying the basic operation, and separating best,

average, and worst case behavior.

Setting up a summation is replaced by setting up and solving a recurrence relation.

Example 1: Computing a Factorial

We start with a simple recursive algorithm to find n!:

factorial(n)

if (n==0) return 1

else return n*factorial(n-1)

The size is n (the parameter passed in to get thing started) and the basic operation is the multipli-

cation in the else part.

There is no difference among the best, average, and worst cases.

You are hopefully familiar with recurrence relations from your math experience, but don’t worry,

we’ll talk about how to set them up and to solve them.

The recurrence for this problem is quite simple:

M(n) = M(n− 1) + 1

Why? The total number of multiplications, M(n), to compute n! is the number of multiplications

to compute (n− 1)!, which we can denote as M(n− 1), plus the 1 to get from (n− 1)! to n!.

We do need a stopping condition or base case for this recurrence, just as we have a stopping

condition for the algorithm. For n = 0, we do not need to do any multiplications, so we can add

the initial condition M(0) = 0.

We can easily determine that M(n) = n just by thinking about this for a few minutes. But instead,

we will worth through this by using back substitution.

M(n) = M(n− 1) + 1

= [M(n− 2) + 1] + 1 = M(n− 2) + 2

= [M(n− 3) + 1] + 2 = M(n− 3) + 3

If we continue this pattern, we can get down to

M(n) = M(n− n) + n = M(0) + n = n.

14

CSC 501 Data Structures and Algorithm Analysis Fall 2015

Example 2: Towers of Hanoi

Many of you are all likely to be familiar with the Towers of Hanoi.

Recall that solving an instance of this problem for n disks involves solving an instance of the

problem of size n− 1, moving a single disk, then again solving an instance of the problem of size

n− 1. We denote the number of moves to solve the probem for n disks as M(n).

So we have the recurrence:

M(n) = 2M(n− 1) + 1

M(1) = 1

Again, we can proceed by backward substitution.

M(n) = 2M(n− 1) + 1

= 2[2M(n− 2) + 1] + 1 = 22M(n− 2) + 2 + 1

= 22[2M(n− 3) + 1] + 2 + 1 = 23M(n− 3) + 22 + 21 + 20.

Continue this procedure until we obtain

M(n) = 2n−1M(1) + 2n−2 + 2n−3 + ...+ 2 + 1

= 2n−1 + (2n−1 − 1) = 2n − 1 ∈ Θ(2n).

Example 3: Number of Binary Digits Needed for a Number

We return now to the problem of determining how many bits are needed to represent a positive

integer in binary.

To find the recurrence more readily, we recast the problem recursively:

binary_rec(n)

if (n == 1) return 1

else return binary_rec(floor(n/2)) + 1

In this case, we will count the number of additions, A(n). For a call to this function, we can see

that A(1) = 0, and

15

CSC 501 Data Structures and Algorithm Analysis Fall 2015

A(n) = A(⌊n/2⌋) + 1

when n > 1.

The problem is a bit complicated by the presence of the floor function. We can only be precise and

apply backward substitution only if we assume that n is a power of 2. Fortunately, we can do this

and still get the correct order of growth (by the smoothness rule).

So assuming n = 2k, we know that A(1) = A(20) = 0 and

A(2k) = A(2k−1) + 1

for k > 0. So we can proceed by backward substitution.

A(2k) = A(2k−1) + 1

= [A(2k−2) + 1] + 1 = A(2k−2) + 2

= [A(2k−3) + 1] + 2 = A(2k−3) + 3

...

= A(2k−k) + k = A(20) + k = k.

Since n = 2k, k = log2 n, so we have

A(n) = log2 n ∈ Θ(log n).

Example 4: Another recurrence example

Suppose in the analysis of some algorithm, we find the following recurrence:

C(n) = 2C(n/2) + 2

when n > 0, and a base case of C(1) = 0.

Again, we will assume n = 2k, so our base case is now C(1) = C(20) = 0, and our recurrence

becomes

C(2k) = 2 ∗ C(2k−1) + 2

Our backward substitution this time proceeds as follows:

16

CSC 501 Data Structures and Algorithm Analysis Fall 2015

C(2k) = 2 ∗ C(2k−1) + 2

= 2[2 ∗ C(2k−2) + 2] + 2

= 2[2[2 ∗ C(2k−3) + 2] + 2] + 2

= 23 ∗ C(2k−3) + 8 + 4 + 2

= 23[2 ∗ C(2k−4) + 2] + 8 + 4 + 2

= 24 ∗ C(2k−4) + 16 + 8 + 4 + 2

...

= 2k ∗ C(2k−k) + 2k + 2k−1 + ...+ 2

= 2k + 2k−1 + ...+ 2

=
k

∑

i=1

2i = 2k+1 − 2

= 2n− 2 ∈ Θ(n)

Master Theorem

Many of the recurrences here will arise when analyzing divide and conquer algorithms, a a very

common and very powerful algorithm design technique. The general idea:

1. Divide the complete instance of problem into two (sometimes more) subproblems that are

smaller instances of the original.

2. Solve the subproblems (recursively).

3. Combine the subproblem solutions into a solution to the complete (original) instance.

While the most common case is that the problem of size n is divided into 2 subproblems of size
n
2
. But in general, we can divide the problem into b subproblems of size n

b
, where a of those

subproblems need to be solved.

This leads to a general recurrence for divide-and-conquer problems:

T (n) = aT (n/b) + f(n), where f(n) ∈ Θ(nd), d ≥ 0.

When we encounter a recurrence of this form, we can use the master theorem to determine the

efficiency class of T :

T (n) =







Θ(nd) if a < bd

Θ(nd log n) if a = bd

Θ(nlogb a) if a > bd

17

CSC 501 Data Structures and Algorithm Analysis Fall 2015

Application of this theorem will often allow us to do a quick analysis of many divide-and-conquer

algorithms without having to solve the recurrence in detail.

18

